Acyclic Chain Complex












0












$begingroup$


enter image description here



I’m a little confused, for a chain to be acyclic, all Betti numbers must be zero. For a Betti number $beta$



$beta_i=dim(Z_i)-dim(B_i)$ where $Z_i=ker(partial_i)$ and $B_i$=im$(partial_i{+}_1))$



I have $beta_1=dim(Z_1)-dim(B_1)=2-3$, am I going about this the right way?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Isn't the image of the arrow $mathbb{R}^2tomathbb{R}^3$ $2$-dimensional, not $3$-dimensional, if I'm interpreting your indexing correctly?
    $endgroup$
    – BWW
    Dec 4 '18 at 1:03












  • $begingroup$
    Wouldn’t $B_1$=im$(T_2)=span{[1 -1 1]}$?, and that would be 3 dimensional?
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:09












  • $begingroup$
    Aaaahhh you’re right, I think I’ve been indexing incorrectly
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:12


















0












$begingroup$


enter image description here



I’m a little confused, for a chain to be acyclic, all Betti numbers must be zero. For a Betti number $beta$



$beta_i=dim(Z_i)-dim(B_i)$ where $Z_i=ker(partial_i)$ and $B_i$=im$(partial_i{+}_1))$



I have $beta_1=dim(Z_1)-dim(B_1)=2-3$, am I going about this the right way?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Isn't the image of the arrow $mathbb{R}^2tomathbb{R}^3$ $2$-dimensional, not $3$-dimensional, if I'm interpreting your indexing correctly?
    $endgroup$
    – BWW
    Dec 4 '18 at 1:03












  • $begingroup$
    Wouldn’t $B_1$=im$(T_2)=span{[1 -1 1]}$?, and that would be 3 dimensional?
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:09












  • $begingroup$
    Aaaahhh you’re right, I think I’ve been indexing incorrectly
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:12
















0












0








0





$begingroup$


enter image description here



I’m a little confused, for a chain to be acyclic, all Betti numbers must be zero. For a Betti number $beta$



$beta_i=dim(Z_i)-dim(B_i)$ where $Z_i=ker(partial_i)$ and $B_i$=im$(partial_i{+}_1))$



I have $beta_1=dim(Z_1)-dim(B_1)=2-3$, am I going about this the right way?










share|cite|improve this question











$endgroup$




enter image description here



I’m a little confused, for a chain to be acyclic, all Betti numbers must be zero. For a Betti number $beta$



$beta_i=dim(Z_i)-dim(B_i)$ where $Z_i=ker(partial_i)$ and $B_i$=im$(partial_i{+}_1))$



I have $beta_1=dim(Z_1)-dim(B_1)=2-3$, am I going about this the right way?







linear-algebra topological-data-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 4 '18 at 0:58







LexyFidds

















asked Dec 4 '18 at 0:54









LexyFidds LexyFidds

226




226












  • $begingroup$
    Isn't the image of the arrow $mathbb{R}^2tomathbb{R}^3$ $2$-dimensional, not $3$-dimensional, if I'm interpreting your indexing correctly?
    $endgroup$
    – BWW
    Dec 4 '18 at 1:03












  • $begingroup$
    Wouldn’t $B_1$=im$(T_2)=span{[1 -1 1]}$?, and that would be 3 dimensional?
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:09












  • $begingroup$
    Aaaahhh you’re right, I think I’ve been indexing incorrectly
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:12




















  • $begingroup$
    Isn't the image of the arrow $mathbb{R}^2tomathbb{R}^3$ $2$-dimensional, not $3$-dimensional, if I'm interpreting your indexing correctly?
    $endgroup$
    – BWW
    Dec 4 '18 at 1:03












  • $begingroup$
    Wouldn’t $B_1$=im$(T_2)=span{[1 -1 1]}$?, and that would be 3 dimensional?
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:09












  • $begingroup$
    Aaaahhh you’re right, I think I’ve been indexing incorrectly
    $endgroup$
    – LexyFidds
    Dec 4 '18 at 1:12


















$begingroup$
Isn't the image of the arrow $mathbb{R}^2tomathbb{R}^3$ $2$-dimensional, not $3$-dimensional, if I'm interpreting your indexing correctly?
$endgroup$
– BWW
Dec 4 '18 at 1:03






$begingroup$
Isn't the image of the arrow $mathbb{R}^2tomathbb{R}^3$ $2$-dimensional, not $3$-dimensional, if I'm interpreting your indexing correctly?
$endgroup$
– BWW
Dec 4 '18 at 1:03














$begingroup$
Wouldn’t $B_1$=im$(T_2)=span{[1 -1 1]}$?, and that would be 3 dimensional?
$endgroup$
– LexyFidds
Dec 4 '18 at 1:09






$begingroup$
Wouldn’t $B_1$=im$(T_2)=span{[1 -1 1]}$?, and that would be 3 dimensional?
$endgroup$
– LexyFidds
Dec 4 '18 at 1:09














$begingroup$
Aaaahhh you’re right, I think I’ve been indexing incorrectly
$endgroup$
– LexyFidds
Dec 4 '18 at 1:12






$begingroup$
Aaaahhh you’re right, I think I’ve been indexing incorrectly
$endgroup$
– LexyFidds
Dec 4 '18 at 1:12












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024957%2facyclic-chain-complex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024957%2facyclic-chain-complex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei