Simpson's rule in numerical methods
$begingroup$
In the following code I have implemented composite Simpson's rule. However I should be getting approximately $291$ but for some reason I am getting something different. I implemented a few other methods to test it and the proper answer was $291$ So how do I fix my code?
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+h*h)
return s*h/3
print(SimpsonMethod(lambda x: x**2,5,10,100))
giving the output
237.39917687499988
numerical-methods
$endgroup$
add a comment |
$begingroup$
In the following code I have implemented composite Simpson's rule. However I should be getting approximately $291$ but for some reason I am getting something different. I implemented a few other methods to test it and the proper answer was $291$ So how do I fix my code?
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+h*h)
return s*h/3
print(SimpsonMethod(lambda x: x**2,5,10,100))
giving the output
237.39917687499988
numerical-methods
$endgroup$
$begingroup$
There are related sites in this group of sites for coding Q's.
$endgroup$
– DanielWainfleet
Dec 4 '18 at 2:23
add a comment |
$begingroup$
In the following code I have implemented composite Simpson's rule. However I should be getting approximately $291$ but for some reason I am getting something different. I implemented a few other methods to test it and the proper answer was $291$ So how do I fix my code?
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+h*h)
return s*h/3
print(SimpsonMethod(lambda x: x**2,5,10,100))
giving the output
237.39917687499988
numerical-methods
$endgroup$
In the following code I have implemented composite Simpson's rule. However I should be getting approximately $291$ but for some reason I am getting something different. I implemented a few other methods to test it and the proper answer was $291$ So how do I fix my code?
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+h*h)
return s*h/3
print(SimpsonMethod(lambda x: x**2,5,10,100))
giving the output
237.39917687499988
numerical-methods
numerical-methods
edited Dec 4 '18 at 0:47
Bernard
119k740113
119k740113
asked Dec 4 '18 at 0:46
fr14fr14
38318
38318
$begingroup$
There are related sites in this group of sites for coding Q's.
$endgroup$
– DanielWainfleet
Dec 4 '18 at 2:23
add a comment |
$begingroup$
There are related sites in this group of sites for coding Q's.
$endgroup$
– DanielWainfleet
Dec 4 '18 at 2:23
$begingroup$
There are related sites in this group of sites for coding Q's.
$endgroup$
– DanielWainfleet
Dec 4 '18 at 2:23
$begingroup$
There are related sites in this group of sites for coding Q's.
$endgroup$
– DanielWainfleet
Dec 4 '18 at 2:23
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Typo in the part of the function that calculates the even nodes, should be s+=2*f(a+i*h)
, this is after fixing:
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+i*h)
return s*h/3.
print(SimpsonMethod(lambda x: x**2,5,10,100))
and the result
291.66666666666674
$endgroup$
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
1
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024948%2fsimpsons-rule-in-numerical-methods%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Typo in the part of the function that calculates the even nodes, should be s+=2*f(a+i*h)
, this is after fixing:
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+i*h)
return s*h/3.
print(SimpsonMethod(lambda x: x**2,5,10,100))
and the result
291.66666666666674
$endgroup$
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
1
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
add a comment |
$begingroup$
Typo in the part of the function that calculates the even nodes, should be s+=2*f(a+i*h)
, this is after fixing:
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+i*h)
return s*h/3.
print(SimpsonMethod(lambda x: x**2,5,10,100))
and the result
291.66666666666674
$endgroup$
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
1
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
add a comment |
$begingroup$
Typo in the part of the function that calculates the even nodes, should be s+=2*f(a+i*h)
, this is after fixing:
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+i*h)
return s*h/3.
print(SimpsonMethod(lambda x: x**2,5,10,100))
and the result
291.66666666666674
$endgroup$
Typo in the part of the function that calculates the even nodes, should be s+=2*f(a+i*h)
, this is after fixing:
from math import pi,cos,sin
def SimpsonMethod(f,a,b,n):
h = (b-a)/n
s = f(a)+f(b)
for i in range(1,n,2):
s+=4*f(a+i*h)
for i in range(2,n-1,2):
s+=2*f(a+i*h)
return s*h/3.
print(SimpsonMethod(lambda x: x**2,5,10,100))
and the result
291.66666666666674
answered Dec 4 '18 at 1:00
caveraccaverac
14.4k31130
14.4k31130
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
1
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
add a comment |
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
1
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
$begingroup$
thanks for the submission! I see where I went wrng
$endgroup$
– fr14
Dec 4 '18 at 1:06
1
1
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
@fr14 Happy to help
$endgroup$
– caverac
Dec 4 '18 at 1:06
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
$begingroup$
I have posted another question using gauss quadrature
$endgroup$
– fr14
Dec 4 '18 at 1:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024948%2fsimpsons-rule-in-numerical-methods%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There are related sites in this group of sites for coding Q's.
$endgroup$
– DanielWainfleet
Dec 4 '18 at 2:23