Regular simpsons rule in numerical methods












0












$begingroup$


In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.



So,



Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?



def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S

print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: sin(x),0,pi/2,100))


which gives the output:



291.6666666666667

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-143-40325ae966e9> in <module>()
1 print(simps(lambda x:x**2, 5, 10, 100))
----> 2 print(simps(lambda x: sin(x),0,pi/2,100))

<ipython-input-142-860ce9822b06> in simps(f, a, b, N)
3 dx = (b-a)/N
4 x = np.linspace(a,b,N+1)
----> 5 y = f(x)
6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
7 return S

<ipython-input-143-40325ae966e9> in <lambda>(x)
1 print(simps(lambda x:x**2, 5, 10, 100))
---->2 print(simps(lambda x: sin(x),0,pi/2,100))

TypeError: only size-1 arrays can be converted to Python scalars









share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.



    So,



    Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?



    def simps(f,a,b,N):
    dx = (b-a)/N
    x = np.linspace(a,b,N+1)
    y = f(x)
    S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
    return S

    print(simps(lambda x:x**2, 5, 10, 100))
    print(simps(lambda x: sin(x),0,pi/2,100))


    which gives the output:



    291.6666666666667

    ---------------------------------------------------------------------------
    TypeError Traceback (most recent call last)
    <ipython-input-143-40325ae966e9> in <module>()
    1 print(simps(lambda x:x**2, 5, 10, 100))
    ----> 2 print(simps(lambda x: sin(x),0,pi/2,100))

    <ipython-input-142-860ce9822b06> in simps(f, a, b, N)
    3 dx = (b-a)/N
    4 x = np.linspace(a,b,N+1)
    ----> 5 y = f(x)
    6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
    7 return S

    <ipython-input-143-40325ae966e9> in <lambda>(x)
    1 print(simps(lambda x:x**2, 5, 10, 100))
    ---->2 print(simps(lambda x: sin(x),0,pi/2,100))

    TypeError: only size-1 arrays can be converted to Python scalars









    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.



      So,



      Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?



      def simps(f,a,b,N):
      dx = (b-a)/N
      x = np.linspace(a,b,N+1)
      y = f(x)
      S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
      return S

      print(simps(lambda x:x**2, 5, 10, 100))
      print(simps(lambda x: sin(x),0,pi/2,100))


      which gives the output:



      291.6666666666667

      ---------------------------------------------------------------------------
      TypeError Traceback (most recent call last)
      <ipython-input-143-40325ae966e9> in <module>()
      1 print(simps(lambda x:x**2, 5, 10, 100))
      ----> 2 print(simps(lambda x: sin(x),0,pi/2,100))

      <ipython-input-142-860ce9822b06> in simps(f, a, b, N)
      3 dx = (b-a)/N
      4 x = np.linspace(a,b,N+1)
      ----> 5 y = f(x)
      6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
      7 return S

      <ipython-input-143-40325ae966e9> in <lambda>(x)
      1 print(simps(lambda x:x**2, 5, 10, 100))
      ---->2 print(simps(lambda x: sin(x),0,pi/2,100))

      TypeError: only size-1 arrays can be converted to Python scalars









      share|cite|improve this question









      $endgroup$




      In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.



      So,



      Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?



      def simps(f,a,b,N):
      dx = (b-a)/N
      x = np.linspace(a,b,N+1)
      y = f(x)
      S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
      return S

      print(simps(lambda x:x**2, 5, 10, 100))
      print(simps(lambda x: sin(x),0,pi/2,100))


      which gives the output:



      291.6666666666667

      ---------------------------------------------------------------------------
      TypeError Traceback (most recent call last)
      <ipython-input-143-40325ae966e9> in <module>()
      1 print(simps(lambda x:x**2, 5, 10, 100))
      ----> 2 print(simps(lambda x: sin(x),0,pi/2,100))

      <ipython-input-142-860ce9822b06> in simps(f, a, b, N)
      3 dx = (b-a)/N
      4 x = np.linspace(a,b,N+1)
      ----> 5 y = f(x)
      6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
      7 return S

      <ipython-input-143-40325ae966e9> in <lambda>(x)
      1 print(simps(lambda x:x**2, 5, 10, 100))
      ---->2 print(simps(lambda x: sin(x),0,pi/2,100))

      TypeError: only size-1 arrays can be converted to Python scalars






      numerical-methods






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 4 '18 at 2:04









      fr14fr14

      38318




      38318






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          linspace is a very useful function to generate uniformly separated points. Remember to use function from numpy to efficiently map operations on arrays



          import numpy as np
          def simps(f,a,b,N):
          dx = (b-a)/N
          x = np.linspace(a,b,N+1)
          y = f(x)
          S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
          return S

          print(simps(lambda x:x**2, 5, 10, 100))
          print(simps(lambda x: np.sin(x),0,np.pi/2,100))


          With result



          291.6666666666667
          1.000000000338236





          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            you have all the answers to my problems haha I appreciate it!
            $endgroup$
            – fr14
            Dec 4 '18 at 2:09










          • $begingroup$
            @fr14 Glad I could help
            $endgroup$
            – caverac
            Dec 4 '18 at 2:11











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025026%2fregular-simpsons-rule-in-numerical-methods%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          linspace is a very useful function to generate uniformly separated points. Remember to use function from numpy to efficiently map operations on arrays



          import numpy as np
          def simps(f,a,b,N):
          dx = (b-a)/N
          x = np.linspace(a,b,N+1)
          y = f(x)
          S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
          return S

          print(simps(lambda x:x**2, 5, 10, 100))
          print(simps(lambda x: np.sin(x),0,np.pi/2,100))


          With result



          291.6666666666667
          1.000000000338236





          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            you have all the answers to my problems haha I appreciate it!
            $endgroup$
            – fr14
            Dec 4 '18 at 2:09










          • $begingroup$
            @fr14 Glad I could help
            $endgroup$
            – caverac
            Dec 4 '18 at 2:11
















          1












          $begingroup$

          linspace is a very useful function to generate uniformly separated points. Remember to use function from numpy to efficiently map operations on arrays



          import numpy as np
          def simps(f,a,b,N):
          dx = (b-a)/N
          x = np.linspace(a,b,N+1)
          y = f(x)
          S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
          return S

          print(simps(lambda x:x**2, 5, 10, 100))
          print(simps(lambda x: np.sin(x),0,np.pi/2,100))


          With result



          291.6666666666667
          1.000000000338236





          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            you have all the answers to my problems haha I appreciate it!
            $endgroup$
            – fr14
            Dec 4 '18 at 2:09










          • $begingroup$
            @fr14 Glad I could help
            $endgroup$
            – caverac
            Dec 4 '18 at 2:11














          1












          1








          1





          $begingroup$

          linspace is a very useful function to generate uniformly separated points. Remember to use function from numpy to efficiently map operations on arrays



          import numpy as np
          def simps(f,a,b,N):
          dx = (b-a)/N
          x = np.linspace(a,b,N+1)
          y = f(x)
          S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
          return S

          print(simps(lambda x:x**2, 5, 10, 100))
          print(simps(lambda x: np.sin(x),0,np.pi/2,100))


          With result



          291.6666666666667
          1.000000000338236





          share|cite|improve this answer









          $endgroup$



          linspace is a very useful function to generate uniformly separated points. Remember to use function from numpy to efficiently map operations on arrays



          import numpy as np
          def simps(f,a,b,N):
          dx = (b-a)/N
          x = np.linspace(a,b,N+1)
          y = f(x)
          S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
          return S

          print(simps(lambda x:x**2, 5, 10, 100))
          print(simps(lambda x: np.sin(x),0,np.pi/2,100))


          With result



          291.6666666666667
          1.000000000338236






          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 4 '18 at 2:07









          caveraccaverac

          14.4k31130




          14.4k31130












          • $begingroup$
            you have all the answers to my problems haha I appreciate it!
            $endgroup$
            – fr14
            Dec 4 '18 at 2:09










          • $begingroup$
            @fr14 Glad I could help
            $endgroup$
            – caverac
            Dec 4 '18 at 2:11


















          • $begingroup$
            you have all the answers to my problems haha I appreciate it!
            $endgroup$
            – fr14
            Dec 4 '18 at 2:09










          • $begingroup$
            @fr14 Glad I could help
            $endgroup$
            – caverac
            Dec 4 '18 at 2:11
















          $begingroup$
          you have all the answers to my problems haha I appreciate it!
          $endgroup$
          – fr14
          Dec 4 '18 at 2:09




          $begingroup$
          you have all the answers to my problems haha I appreciate it!
          $endgroup$
          – fr14
          Dec 4 '18 at 2:09












          $begingroup$
          @fr14 Glad I could help
          $endgroup$
          – caverac
          Dec 4 '18 at 2:11




          $begingroup$
          @fr14 Glad I could help
          $endgroup$
          – caverac
          Dec 4 '18 at 2:11


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025026%2fregular-simpsons-rule-in-numerical-methods%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei