AKS - proving that $frac{n}{p}$ is introspective












2














I have a problem with showing that $frac{n}{p}$ is introspective.



Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.



First of all, recall the following definitions and facts





  • $pmid n$ is a prime number and $p>r>1$.

  • $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$

  • $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$

  • $forall 1leq aleq r:X+ain mathcal{P}_n$

  • $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$

  • $p,nin mathcal{G}$


We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following



begin{align*}
fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
& equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
& stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
& equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
end{align*}

Explanations





  1. $pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$

  2. $X^r-1mid X^{frac{n}{p}cdot r}-1$

  3. $ninmathcal{G}$


Concluding we get that
$$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
$$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$



However, $R$ is not an integral domain so we cannot deduce that
$$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$



Please help, they say in the paper that it follows immediately and I do not understands why.



Edit: I have also noted that
$$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$



Note: The version of the paper that I work with



https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf










share|cite|improve this question





























    2














    I have a problem with showing that $frac{n}{p}$ is introspective.



    Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.



    First of all, recall the following definitions and facts





    • $pmid n$ is a prime number and $p>r>1$.

    • $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$

    • $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$

    • $forall 1leq aleq r:X+ain mathcal{P}_n$

    • $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$

    • $p,nin mathcal{G}$


    We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following



    begin{align*}
    fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
    & equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
    fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
    & stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
    & equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
    end{align*}

    Explanations





    1. $pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$

    2. $X^r-1mid X^{frac{n}{p}cdot r}-1$

    3. $ninmathcal{G}$


    Concluding we get that
    $$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
    But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
    $$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$



    However, $R$ is not an integral domain so we cannot deduce that
    $$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$



    Please help, they say in the paper that it follows immediately and I do not understands why.



    Edit: I have also noted that
    $$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$



    Note: The version of the paper that I work with



    https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf










    share|cite|improve this question



























      2












      2








      2


      1





      I have a problem with showing that $frac{n}{p}$ is introspective.



      Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.



      First of all, recall the following definitions and facts





      • $pmid n$ is a prime number and $p>r>1$.

      • $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$

      • $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$

      • $forall 1leq aleq r:X+ain mathcal{P}_n$

      • $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$

      • $p,nin mathcal{G}$


      We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following



      begin{align*}
      fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
      & equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
      fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
      & stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
      & equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
      end{align*}

      Explanations





      1. $pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$

      2. $X^r-1mid X^{frac{n}{p}cdot r}-1$

      3. $ninmathcal{G}$


      Concluding we get that
      $$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
      But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
      $$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$



      However, $R$ is not an integral domain so we cannot deduce that
      $$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$



      Please help, they say in the paper that it follows immediately and I do not understands why.



      Edit: I have also noted that
      $$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$



      Note: The version of the paper that I work with



      https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf










      share|cite|improve this question















      I have a problem with showing that $frac{n}{p}$ is introspective.



      Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.



      First of all, recall the following definitions and facts





      • $pmid n$ is a prime number and $p>r>1$.

      • $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$

      • $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$

      • $forall 1leq aleq r:X+ain mathcal{P}_n$

      • $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$

      • $p,nin mathcal{G}$


      We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following



      begin{align*}
      fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
      & equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
      fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
      & stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
      & equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
      end{align*}

      Explanations





      1. $pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$

      2. $X^r-1mid X^{frac{n}{p}cdot r}-1$

      3. $ninmathcal{G}$


      Concluding we get that
      $$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
      But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
      $$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$



      However, $R$ is not an integral domain so we cannot deduce that
      $$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$



      Please help, they say in the paper that it follows immediately and I do not understands why.



      Edit: I have also noted that
      $$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$



      Note: The version of the paper that I work with



      https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf







      number-theory proof-verification primality-test






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 '18 at 16:30







      Don Fanucci

















      asked Nov 29 '18 at 21:20









      Don FanucciDon Fanucci

      1,093419




      1,093419






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Finally, the solution is simple, I think.



          We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).



          Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019237%2faks-proving-that-fracnp-is-introspective%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Finally, the solution is simple, I think.



            We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).



            Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.






            share|cite|improve this answer


























              0














              Finally, the solution is simple, I think.



              We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).



              Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.






              share|cite|improve this answer
























                0












                0








                0






                Finally, the solution is simple, I think.



                We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).



                Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.






                share|cite|improve this answer












                Finally, the solution is simple, I think.



                We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).



                Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 4 '18 at 18:41









                Don FanucciDon Fanucci

                1,093419




                1,093419






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019237%2faks-proving-that-fracnp-is-introspective%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei