How find this $lim_{ntoinfty}left(frac{1}{a_{n}+1}+frac{1}{a_{n}+2}+cdots+frac{1}{a_{n}+b_{n}}right)=x$












3












$begingroup$


Prove that for any $xin[0,infty)$ there exist sequences of positive integers ${a_{n}}_{ninmathbb N}$ and ${b_{n}}_{ninmathbb N}$, such that
$$lim_{ntoinfty}left(dfrac{1}{a_{n}+1}+dfrac{1}{a_{n}+2}+cdots+dfrac{1}{a_{n}+b_{n}}right)=x.$$



I only know this
$$lim_{ntoinfty}dfrac{1}{n+1}+dfrac{1}{n+2}+cdots+dfrac{1}{n+n}=ln{2}$$



But for my problem I can't. Thank you










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Prove that for any $xin[0,infty)$ there exist sequences of positive integers ${a_{n}}_{ninmathbb N}$ and ${b_{n}}_{ninmathbb N}$, such that
    $$lim_{ntoinfty}left(dfrac{1}{a_{n}+1}+dfrac{1}{a_{n}+2}+cdots+dfrac{1}{a_{n}+b_{n}}right)=x.$$



    I only know this
    $$lim_{ntoinfty}dfrac{1}{n+1}+dfrac{1}{n+2}+cdots+dfrac{1}{n+n}=ln{2}$$



    But for my problem I can't. Thank you










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      3



      $begingroup$


      Prove that for any $xin[0,infty)$ there exist sequences of positive integers ${a_{n}}_{ninmathbb N}$ and ${b_{n}}_{ninmathbb N}$, such that
      $$lim_{ntoinfty}left(dfrac{1}{a_{n}+1}+dfrac{1}{a_{n}+2}+cdots+dfrac{1}{a_{n}+b_{n}}right)=x.$$



      I only know this
      $$lim_{ntoinfty}dfrac{1}{n+1}+dfrac{1}{n+2}+cdots+dfrac{1}{n+n}=ln{2}$$



      But for my problem I can't. Thank you










      share|cite|improve this question











      $endgroup$




      Prove that for any $xin[0,infty)$ there exist sequences of positive integers ${a_{n}}_{ninmathbb N}$ and ${b_{n}}_{ninmathbb N}$, such that
      $$lim_{ntoinfty}left(dfrac{1}{a_{n}+1}+dfrac{1}{a_{n}+2}+cdots+dfrac{1}{a_{n}+b_{n}}right)=x.$$



      I only know this
      $$lim_{ntoinfty}dfrac{1}{n+1}+dfrac{1}{n+2}+cdots+dfrac{1}{n+n}=ln{2}$$



      But for my problem I can't. Thank you







      calculus sequences-and-series analysis limits integers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 28 '14 at 15:05









      Yiorgos S. Smyrlis

      63.2k1384163




      63.2k1384163










      asked Jan 19 '14 at 14:41









      china mathchina math

      10.2k631117




      10.2k631117






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          Note that (integral comparison test)
          $$
          ln big(tfrac{ell-1/n}{k-1/n}big)
          =int_{kn-1}^{ell n-1}frac{dx}{x}<
          frac{1}{kn+1}+frac{1}{kn+2}+cdots+frac{1}{ell n}<int_{kn}^{ell n}frac{dx}{x}
          =ln (tfrac{ell}{k})
          $$

          Let strictly increasing sequences of integers $k_n$, $ell_n$, such that
          $$
          frac{ell_n}{k_n}tomathrm{e}^x.
          $$

          Then
          $$
          lim_{ntoinfty}sum_{j=1}^{(ell_m-k_m)n}
          frac{1}{k_nn+j}to x.
          $$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Hint: Change the limit in a Riemann sum :-)



            like here






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
              $endgroup$
              – china math
              Jan 19 '14 at 14:45





















            0












            $begingroup$

            Use the fact that any real number can be approximated arbitrarily closely by rationals. The numbers that you are looking for are any sequences such that:
            $$e^x-1=lim_{ntoinfty}frac{b_n}{a_n}$$
            (Can you see why? Hint: $H_n=dfrac11+dfrac12+dfrac13+dotsb+dfrac1napproxln n+gamma$, and what you have above is $H_{a_n+b_n}-H_{a_n}$.)






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f643743%2fhow-find-this-lim-n-to-infty-left-frac1a-n1-frac1a-n2-cdots%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              Note that (integral comparison test)
              $$
              ln big(tfrac{ell-1/n}{k-1/n}big)
              =int_{kn-1}^{ell n-1}frac{dx}{x}<
              frac{1}{kn+1}+frac{1}{kn+2}+cdots+frac{1}{ell n}<int_{kn}^{ell n}frac{dx}{x}
              =ln (tfrac{ell}{k})
              $$

              Let strictly increasing sequences of integers $k_n$, $ell_n$, such that
              $$
              frac{ell_n}{k_n}tomathrm{e}^x.
              $$

              Then
              $$
              lim_{ntoinfty}sum_{j=1}^{(ell_m-k_m)n}
              frac{1}{k_nn+j}to x.
              $$






              share|cite|improve this answer











              $endgroup$


















                7












                $begingroup$

                Note that (integral comparison test)
                $$
                ln big(tfrac{ell-1/n}{k-1/n}big)
                =int_{kn-1}^{ell n-1}frac{dx}{x}<
                frac{1}{kn+1}+frac{1}{kn+2}+cdots+frac{1}{ell n}<int_{kn}^{ell n}frac{dx}{x}
                =ln (tfrac{ell}{k})
                $$

                Let strictly increasing sequences of integers $k_n$, $ell_n$, such that
                $$
                frac{ell_n}{k_n}tomathrm{e}^x.
                $$

                Then
                $$
                lim_{ntoinfty}sum_{j=1}^{(ell_m-k_m)n}
                frac{1}{k_nn+j}to x.
                $$






                share|cite|improve this answer











                $endgroup$
















                  7












                  7








                  7





                  $begingroup$

                  Note that (integral comparison test)
                  $$
                  ln big(tfrac{ell-1/n}{k-1/n}big)
                  =int_{kn-1}^{ell n-1}frac{dx}{x}<
                  frac{1}{kn+1}+frac{1}{kn+2}+cdots+frac{1}{ell n}<int_{kn}^{ell n}frac{dx}{x}
                  =ln (tfrac{ell}{k})
                  $$

                  Let strictly increasing sequences of integers $k_n$, $ell_n$, such that
                  $$
                  frac{ell_n}{k_n}tomathrm{e}^x.
                  $$

                  Then
                  $$
                  lim_{ntoinfty}sum_{j=1}^{(ell_m-k_m)n}
                  frac{1}{k_nn+j}to x.
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  Note that (integral comparison test)
                  $$
                  ln big(tfrac{ell-1/n}{k-1/n}big)
                  =int_{kn-1}^{ell n-1}frac{dx}{x}<
                  frac{1}{kn+1}+frac{1}{kn+2}+cdots+frac{1}{ell n}<int_{kn}^{ell n}frac{dx}{x}
                  =ln (tfrac{ell}{k})
                  $$

                  Let strictly increasing sequences of integers $k_n$, $ell_n$, such that
                  $$
                  frac{ell_n}{k_n}tomathrm{e}^x.
                  $$

                  Then
                  $$
                  lim_{ntoinfty}sum_{j=1}^{(ell_m-k_m)n}
                  frac{1}{k_nn+j}to x.
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 9 '18 at 17:34

























                  answered Jan 19 '14 at 14:58









                  Yiorgos S. SmyrlisYiorgos S. Smyrlis

                  63.2k1384163




                  63.2k1384163























                      1












                      $begingroup$

                      Hint: Change the limit in a Riemann sum :-)



                      like here






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
                        $endgroup$
                        – china math
                        Jan 19 '14 at 14:45


















                      1












                      $begingroup$

                      Hint: Change the limit in a Riemann sum :-)



                      like here






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
                        $endgroup$
                        – china math
                        Jan 19 '14 at 14:45
















                      1












                      1








                      1





                      $begingroup$

                      Hint: Change the limit in a Riemann sum :-)



                      like here






                      share|cite|improve this answer











                      $endgroup$



                      Hint: Change the limit in a Riemann sum :-)



                      like here







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Apr 13 '17 at 12:21









                      Community

                      1




                      1










                      answered Jan 19 '14 at 14:43









                      Bman72Bman72

                      1,9221922




                      1,9221922












                      • $begingroup$
                        can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
                        $endgroup$
                        – china math
                        Jan 19 '14 at 14:45




















                      • $begingroup$
                        can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
                        $endgroup$
                        – china math
                        Jan 19 '14 at 14:45


















                      $begingroup$
                      can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
                      $endgroup$
                      – china math
                      Jan 19 '14 at 14:45






                      $begingroup$
                      can you post your solution? why xsit sequences of nonnegative integers ${a_{n}},{b_{n}}$?Thank you
                      $endgroup$
                      – china math
                      Jan 19 '14 at 14:45













                      0












                      $begingroup$

                      Use the fact that any real number can be approximated arbitrarily closely by rationals. The numbers that you are looking for are any sequences such that:
                      $$e^x-1=lim_{ntoinfty}frac{b_n}{a_n}$$
                      (Can you see why? Hint: $H_n=dfrac11+dfrac12+dfrac13+dotsb+dfrac1napproxln n+gamma$, and what you have above is $H_{a_n+b_n}-H_{a_n}$.)






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Use the fact that any real number can be approximated arbitrarily closely by rationals. The numbers that you are looking for are any sequences such that:
                        $$e^x-1=lim_{ntoinfty}frac{b_n}{a_n}$$
                        (Can you see why? Hint: $H_n=dfrac11+dfrac12+dfrac13+dotsb+dfrac1napproxln n+gamma$, and what you have above is $H_{a_n+b_n}-H_{a_n}$.)






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Use the fact that any real number can be approximated arbitrarily closely by rationals. The numbers that you are looking for are any sequences such that:
                          $$e^x-1=lim_{ntoinfty}frac{b_n}{a_n}$$
                          (Can you see why? Hint: $H_n=dfrac11+dfrac12+dfrac13+dotsb+dfrac1napproxln n+gamma$, and what you have above is $H_{a_n+b_n}-H_{a_n}$.)






                          share|cite|improve this answer









                          $endgroup$



                          Use the fact that any real number can be approximated arbitrarily closely by rationals. The numbers that you are looking for are any sequences such that:
                          $$e^x-1=lim_{ntoinfty}frac{b_n}{a_n}$$
                          (Can you see why? Hint: $H_n=dfrac11+dfrac12+dfrac13+dotsb+dfrac1napproxln n+gamma$, and what you have above is $H_{a_n+b_n}-H_{a_n}$.)







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Sep 28 '14 at 15:39









                          Akiva WeinbergerAkiva Weinberger

                          13.8k12167




                          13.8k12167






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f643743%2fhow-find-this-lim-n-to-infty-left-frac1a-n1-frac1a-n2-cdots%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Ellipse (mathématiques)

                              Quarter-circle Tiles

                              Mont Emei