Showing weak convergence in $sigma(L^p,L^{p'})$












1












$begingroup$


I am solving the following exercise.



enter image description here



I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?



enter image description here



I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)










share|cite|improve this question









$endgroup$












  • $begingroup$
    Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
    $endgroup$
    – Davide Giraudo
    Dec 11 '18 at 9:27
















1












$begingroup$


I am solving the following exercise.



enter image description here



I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?



enter image description here



I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)










share|cite|improve this question









$endgroup$












  • $begingroup$
    Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
    $endgroup$
    – Davide Giraudo
    Dec 11 '18 at 9:27














1












1








1





$begingroup$


I am solving the following exercise.



enter image description here



I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?



enter image description here



I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)










share|cite|improve this question









$endgroup$




I am solving the following exercise.



enter image description here



I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?



enter image description here



I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)







functional-analysis weak-convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 9 '18 at 19:21









Logarithmic DerivativeLogarithmic Derivative

3421416




3421416












  • $begingroup$
    Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
    $endgroup$
    – Davide Giraudo
    Dec 11 '18 at 9:27


















  • $begingroup$
    Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
    $endgroup$
    – Davide Giraudo
    Dec 11 '18 at 9:27
















$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27




$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27










1 Answer
1






active

oldest

votes


















1












$begingroup$

Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
$$
leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
$$

Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
begin{align}
leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert \
&leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert\
&leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
- f(x) rightrvert\
&leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert sum_{k=n}^m lambda_k.
end{align}

We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
$$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert
$$

hence letting $varepsilonto 0$ gives
$$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert,
$$

which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032830%2fshowing-weak-convergence-in-sigmalp-lp%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
    $$
    leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
    $$

    Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
    begin{align}
    leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
    -lambda_kf(x) rightrvert \
    &leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
    -lambda_kf(x) rightrvert\
    &leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
    - f(x) rightrvert\
    &leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
    - f(x) rightrvert sum_{k=n}^m lambda_k.
    end{align}

    We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
    $$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
    - f(x) rightrvert
    $$

    hence letting $varepsilonto 0$ gives
    $$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
    - f(x) rightrvert,
    $$

    which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
      $$
      leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
      $$

      Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
      begin{align}
      leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
      -lambda_kf(x) rightrvert \
      &leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
      -lambda_kf(x) rightrvert\
      &leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
      - f(x) rightrvert\
      &leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
      - f(x) rightrvert sum_{k=n}^m lambda_k.
      end{align}

      We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
      $$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
      - f(x) rightrvert
      $$

      hence letting $varepsilonto 0$ gives
      $$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
      - f(x) rightrvert,
      $$

      which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
        $$
        leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
        $$

        Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
        begin{align}
        leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
        -lambda_kf(x) rightrvert \
        &leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
        -lambda_kf(x) rightrvert\
        &leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
        - f(x) rightrvert\
        &leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
        - f(x) rightrvert sum_{k=n}^m lambda_k.
        end{align}

        We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
        $$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
        - f(x) rightrvert
        $$

        hence letting $varepsilonto 0$ gives
        $$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
        - f(x) rightrvert,
        $$

        which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.






        share|cite|improve this answer









        $endgroup$



        Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
        $$
        leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
        $$

        Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
        begin{align}
        leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
        -lambda_kf(x) rightrvert \
        &leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
        -lambda_kf(x) rightrvert\
        &leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
        - f(x) rightrvert\
        &leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
        - f(x) rightrvert sum_{k=n}^m lambda_k.
        end{align}

        We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
        $$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
        - f(x) rightrvert
        $$

        hence letting $varepsilonto 0$ gives
        $$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
        - f(x) rightrvert,
        $$

        which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 11 '18 at 9:40









        Davide GiraudoDavide Giraudo

        126k16150261




        126k16150261






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032830%2fshowing-weak-convergence-in-sigmalp-lp%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei