If $2f(x-1)+f(1-x)=2x$ then $f(x)=?$
$begingroup$
We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?
functions
$endgroup$
add a comment |
$begingroup$
We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?
functions
$endgroup$
$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28
$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04
$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05
$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06
$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08
add a comment |
$begingroup$
We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?
functions
$endgroup$
We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?
functions
functions
asked Dec 9 '18 at 20:20
user602338user602338
1607
1607
$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28
$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04
$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05
$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06
$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08
add a comment |
$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28
$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04
$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05
$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06
$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08
$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28
$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28
$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04
$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04
$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05
$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05
$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06
$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06
$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08
$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$xto 1-x$: $$2f(-x)+f(x)=2-2x$$
$xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$
Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$
$endgroup$
add a comment |
$begingroup$
Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get
$$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$
which give us: $$f(t)= 2t+2/3$$
$endgroup$
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
1
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
|
show 8 more comments
$begingroup$
$2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$
$(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$
$endgroup$
add a comment |
$begingroup$
$2f(x-1)+f(1-x)=2x$
Set $y=1-ximplies x=1-y$
$2f(-y)+f(y)=2(1-y)$
Set $y=x-1implies x=y+1$
$2f(y)+f(-y)=2(1+y)$
Eliminate $f(-y)$ between the two equations:
$implies f(y)=2y+frac23$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032931%2fif-2fx-1f1-x-2x-then-fx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$xto 1-x$: $$2f(-x)+f(x)=2-2x$$
$xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$
Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$
$endgroup$
add a comment |
$begingroup$
$xto 1-x$: $$2f(-x)+f(x)=2-2x$$
$xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$
Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$
$endgroup$
add a comment |
$begingroup$
$xto 1-x$: $$2f(-x)+f(x)=2-2x$$
$xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$
Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$
$endgroup$
$xto 1-x$: $$2f(-x)+f(x)=2-2x$$
$xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$
Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$
edited Dec 9 '18 at 20:46
answered Dec 9 '18 at 20:30
Dr. MathvaDr. Mathva
1,096316
1,096316
add a comment |
add a comment |
$begingroup$
Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get
$$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$
which give us: $$f(t)= 2t+2/3$$
$endgroup$
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
1
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
|
show 8 more comments
$begingroup$
Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get
$$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$
which give us: $$f(t)= 2t+2/3$$
$endgroup$
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
1
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
|
show 8 more comments
$begingroup$
Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get
$$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$
which give us: $$f(t)= 2t+2/3$$
$endgroup$
Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get
$$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$
which give us: $$f(t)= 2t+2/3$$
edited Dec 9 '18 at 20:53
answered Dec 9 '18 at 20:29
greedoidgreedoid
40.7k1149100
40.7k1149100
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
1
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
|
show 8 more comments
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
1
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
$endgroup$
– user602338
Dec 9 '18 at 20:32
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
$begingroup$
Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
$endgroup$
– greedoid
Dec 9 '18 at 20:33
1
1
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
@greedoid $f(t)=2t+2/3$
$endgroup$
– Shubham Johri
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
No I mean how did you switch between $t$ and $-t$??
$endgroup$
– user602338
Dec 9 '18 at 20:42
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
$begingroup$
@ShubhamJohri Thanks
$endgroup$
– greedoid
Dec 9 '18 at 20:44
|
show 8 more comments
$begingroup$
$2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$
$(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$
$endgroup$
add a comment |
$begingroup$
$2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$
$(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$
$endgroup$
add a comment |
$begingroup$
$2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$
$(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$
$endgroup$
$2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$
$(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$
edited Dec 9 '18 at 20:48
answered Dec 9 '18 at 20:28
giannispapavgiannispapav
1,534324
1,534324
add a comment |
add a comment |
$begingroup$
$2f(x-1)+f(1-x)=2x$
Set $y=1-ximplies x=1-y$
$2f(-y)+f(y)=2(1-y)$
Set $y=x-1implies x=y+1$
$2f(y)+f(-y)=2(1+y)$
Eliminate $f(-y)$ between the two equations:
$implies f(y)=2y+frac23$
$endgroup$
add a comment |
$begingroup$
$2f(x-1)+f(1-x)=2x$
Set $y=1-ximplies x=1-y$
$2f(-y)+f(y)=2(1-y)$
Set $y=x-1implies x=y+1$
$2f(y)+f(-y)=2(1+y)$
Eliminate $f(-y)$ between the two equations:
$implies f(y)=2y+frac23$
$endgroup$
add a comment |
$begingroup$
$2f(x-1)+f(1-x)=2x$
Set $y=1-ximplies x=1-y$
$2f(-y)+f(y)=2(1-y)$
Set $y=x-1implies x=y+1$
$2f(y)+f(-y)=2(1+y)$
Eliminate $f(-y)$ between the two equations:
$implies f(y)=2y+frac23$
$endgroup$
$2f(x-1)+f(1-x)=2x$
Set $y=1-ximplies x=1-y$
$2f(-y)+f(y)=2(1-y)$
Set $y=x-1implies x=y+1$
$2f(y)+f(-y)=2(1+y)$
Eliminate $f(-y)$ between the two equations:
$implies f(y)=2y+frac23$
answered Dec 9 '18 at 20:34
Shubham JohriShubham Johri
5,097717
5,097717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032931%2fif-2fx-1f1-x-2x-then-fx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28
$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04
$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05
$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06
$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08