If $2f(x-1)+f(1-x)=2x$ then $f(x)=?$












0












$begingroup$


We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?










share|cite|improve this question









$endgroup$












  • $begingroup$
    I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
    $endgroup$
    – Crostul
    Dec 9 '18 at 20:28












  • $begingroup$
    What have you done?
    $endgroup$
    – greedoid
    Dec 16 '18 at 20:04










  • $begingroup$
    Ummm.. nothing yet!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:05










  • $begingroup$
    @greedoid I was exactly now thinkin' about it!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:06










  • $begingroup$
    @greedoid would you tell me what Dr.mathva has done?!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:08
















0












$begingroup$


We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?










share|cite|improve this question









$endgroup$












  • $begingroup$
    I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
    $endgroup$
    – Crostul
    Dec 9 '18 at 20:28












  • $begingroup$
    What have you done?
    $endgroup$
    – greedoid
    Dec 16 '18 at 20:04










  • $begingroup$
    Ummm.. nothing yet!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:05










  • $begingroup$
    @greedoid I was exactly now thinkin' about it!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:06










  • $begingroup$
    @greedoid would you tell me what Dr.mathva has done?!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:08














0












0








0


1



$begingroup$


We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?










share|cite|improve this question









$endgroup$




We've been given a function:
$$2f(x-1)+f(1-x)=2x$$
So now someone please teach me how to find:
$$f(x)=???$$
Sorry! Really sorry but I don't have any ideas about it! Please tell me how can I solve this kind of questions?







functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 9 '18 at 20:20









user602338user602338

1607




1607












  • $begingroup$
    I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
    $endgroup$
    – Crostul
    Dec 9 '18 at 20:28












  • $begingroup$
    What have you done?
    $endgroup$
    – greedoid
    Dec 16 '18 at 20:04










  • $begingroup$
    Ummm.. nothing yet!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:05










  • $begingroup$
    @greedoid I was exactly now thinkin' about it!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:06










  • $begingroup$
    @greedoid would you tell me what Dr.mathva has done?!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:08


















  • $begingroup$
    I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
    $endgroup$
    – Crostul
    Dec 9 '18 at 20:28












  • $begingroup$
    What have you done?
    $endgroup$
    – greedoid
    Dec 16 '18 at 20:04










  • $begingroup$
    Ummm.. nothing yet!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:05










  • $begingroup$
    @greedoid I was exactly now thinkin' about it!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:06










  • $begingroup$
    @greedoid would you tell me what Dr.mathva has done?!
    $endgroup$
    – user602338
    Dec 16 '18 at 20:08
















$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28






$begingroup$
I would start by substituting $x-1=y$. Then your functional equation becomes $$f(-y) = 2(y-1-f(y))$$
$endgroup$
– Crostul
Dec 9 '18 at 20:28














$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04




$begingroup$
What have you done?
$endgroup$
– greedoid
Dec 16 '18 at 20:04












$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05




$begingroup$
Ummm.. nothing yet!
$endgroup$
– user602338
Dec 16 '18 at 20:05












$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06




$begingroup$
@greedoid I was exactly now thinkin' about it!
$endgroup$
– user602338
Dec 16 '18 at 20:06












$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08




$begingroup$
@greedoid would you tell me what Dr.mathva has done?!
$endgroup$
– user602338
Dec 16 '18 at 20:08










4 Answers
4






active

oldest

votes


















1












$begingroup$

$xto 1-x$: $$2f(-x)+f(x)=2-2x$$
$xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$



Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$






share|cite|improve this answer











$endgroup$





















    6












    $begingroup$

    Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get



    $$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$



    which give us: $$f(t)= 2t+2/3$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
      $endgroup$
      – user602338
      Dec 9 '18 at 20:32












    • $begingroup$
      Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
      $endgroup$
      – greedoid
      Dec 9 '18 at 20:33






    • 1




      $begingroup$
      @greedoid $f(t)=2t+2/3$
      $endgroup$
      – Shubham Johri
      Dec 9 '18 at 20:42










    • $begingroup$
      No I mean how did you switch between $t$ and $-t$??
      $endgroup$
      – user602338
      Dec 9 '18 at 20:42










    • $begingroup$
      @ShubhamJohri Thanks
      $endgroup$
      – greedoid
      Dec 9 '18 at 20:44



















    2












    $begingroup$

    $2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$



    $(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$






    share|cite|improve this answer











    $endgroup$





















      1












      $begingroup$

      $2f(x-1)+f(1-x)=2x$



      Set $y=1-ximplies x=1-y$



      $2f(-y)+f(y)=2(1-y)$



      Set $y=x-1implies x=y+1$



      $2f(y)+f(-y)=2(1+y)$



      Eliminate $f(-y)$ between the two equations:



      $implies f(y)=2y+frac23$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032931%2fif-2fx-1f1-x-2x-then-fx%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        $xto 1-x$: $$2f(-x)+f(x)=2-2x$$
        $xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$



        Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$






        share|cite|improve this answer











        $endgroup$


















          1












          $begingroup$

          $xto 1-x$: $$2f(-x)+f(x)=2-2x$$
          $xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$



          Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$






          share|cite|improve this answer











          $endgroup$
















            1












            1








            1





            $begingroup$

            $xto 1-x$: $$2f(-x)+f(x)=2-2x$$
            $xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$



            Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$






            share|cite|improve this answer











            $endgroup$



            $xto 1-x$: $$2f(-x)+f(x)=2-2x$$
            $xto 1+x$: $$2f(x)+f(-x)=2+2x$$ $$Rightarrow 4f(x)+2f(-x)=4+4x$$



            Subtracting: $$3f(x)=2+6x$$ $$Rightarrow f(x)=frac{2}{3}+2x$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 9 '18 at 20:46

























            answered Dec 9 '18 at 20:30









            Dr. MathvaDr. Mathva

            1,096316




            1,096316























                6












                $begingroup$

                Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get



                $$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$



                which give us: $$f(t)= 2t+2/3$$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:32












                • $begingroup$
                  Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:33






                • 1




                  $begingroup$
                  @greedoid $f(t)=2t+2/3$
                  $endgroup$
                  – Shubham Johri
                  Dec 9 '18 at 20:42










                • $begingroup$
                  No I mean how did you switch between $t$ and $-t$??
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:42










                • $begingroup$
                  @ShubhamJohri Thanks
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:44
















                6












                $begingroup$

                Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get



                $$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$



                which give us: $$f(t)= 2t+2/3$$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:32












                • $begingroup$
                  Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:33






                • 1




                  $begingroup$
                  @greedoid $f(t)=2t+2/3$
                  $endgroup$
                  – Shubham Johri
                  Dec 9 '18 at 20:42










                • $begingroup$
                  No I mean how did you switch between $t$ and $-t$??
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:42










                • $begingroup$
                  @ShubhamJohri Thanks
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:44














                6












                6








                6





                $begingroup$

                Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get



                $$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$



                which give us: $$f(t)= 2t+2/3$$






                share|cite|improve this answer











                $endgroup$



                Let $t= x-1$ then we get $$2f(t)+f(-t)= 2t+2$$ (which is valid for all real $t$ since the linear function $xmapsto x-1$ is surjective) and if we swich $t$ with $-t$ we get



                $$2f(-t)+f(t)= -2t+2$$ So $$ 2(2t+2-2f(t))+f(t)= -2t+2$$



                which give us: $$f(t)= 2t+2/3$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 9 '18 at 20:53

























                answered Dec 9 '18 at 20:29









                greedoidgreedoid

                40.7k1149100




                40.7k1149100












                • $begingroup$
                  Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:32












                • $begingroup$
                  Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:33






                • 1




                  $begingroup$
                  @greedoid $f(t)=2t+2/3$
                  $endgroup$
                  – Shubham Johri
                  Dec 9 '18 at 20:42










                • $begingroup$
                  No I mean how did you switch between $t$ and $-t$??
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:42










                • $begingroup$
                  @ShubhamJohri Thanks
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:44


















                • $begingroup$
                  Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:32












                • $begingroup$
                  Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:33






                • 1




                  $begingroup$
                  @greedoid $f(t)=2t+2/3$
                  $endgroup$
                  – Shubham Johri
                  Dec 9 '18 at 20:42










                • $begingroup$
                  No I mean how did you switch between $t$ and $-t$??
                  $endgroup$
                  – user602338
                  Dec 9 '18 at 20:42










                • $begingroup$
                  @ShubhamJohri Thanks
                  $endgroup$
                  – greedoid
                  Dec 9 '18 at 20:44
















                $begingroup$
                Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
                $endgroup$
                – user602338
                Dec 9 '18 at 20:32






                $begingroup$
                Oh big thanks to you. Just a little point: Can you explain how $f(-t)$ works?
                $endgroup$
                – user602338
                Dec 9 '18 at 20:32














                $begingroup$
                Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
                $endgroup$
                – greedoid
                Dec 9 '18 at 20:33




                $begingroup$
                Expres form 1.st $f(-t) = 2t+2-2f(t)$ and plug it in second equation.
                $endgroup$
                – greedoid
                Dec 9 '18 at 20:33




                1




                1




                $begingroup$
                @greedoid $f(t)=2t+2/3$
                $endgroup$
                – Shubham Johri
                Dec 9 '18 at 20:42




                $begingroup$
                @greedoid $f(t)=2t+2/3$
                $endgroup$
                – Shubham Johri
                Dec 9 '18 at 20:42












                $begingroup$
                No I mean how did you switch between $t$ and $-t$??
                $endgroup$
                – user602338
                Dec 9 '18 at 20:42




                $begingroup$
                No I mean how did you switch between $t$ and $-t$??
                $endgroup$
                – user602338
                Dec 9 '18 at 20:42












                $begingroup$
                @ShubhamJohri Thanks
                $endgroup$
                – greedoid
                Dec 9 '18 at 20:44




                $begingroup$
                @ShubhamJohri Thanks
                $endgroup$
                – greedoid
                Dec 9 '18 at 20:44











                2












                $begingroup$

                $2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$



                $(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$






                share|cite|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  $2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$



                  $(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$






                  share|cite|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    $2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$



                    $(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$






                    share|cite|improve this answer











                    $endgroup$



                    $2f(x-1)+f(1-x)=2xRightarrow 2f(y)+f(-y)=2(y+1) ,(1)Rightarrow 2f(-y)+f(y)=2(-y+1)Rightarrow -4f(-y)-2f(y)=-4(-y+1) , (2)$



                    $(1)+(2)Rightarrow -3f(-y)=6y-2Rightarrow -3f(y)=-6y-2Rightarrow f(y)=2y+dfrac{2}{3}$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Dec 9 '18 at 20:48

























                    answered Dec 9 '18 at 20:28









                    giannispapavgiannispapav

                    1,534324




                    1,534324























                        1












                        $begingroup$

                        $2f(x-1)+f(1-x)=2x$



                        Set $y=1-ximplies x=1-y$



                        $2f(-y)+f(y)=2(1-y)$



                        Set $y=x-1implies x=y+1$



                        $2f(y)+f(-y)=2(1+y)$



                        Eliminate $f(-y)$ between the two equations:



                        $implies f(y)=2y+frac23$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          $2f(x-1)+f(1-x)=2x$



                          Set $y=1-ximplies x=1-y$



                          $2f(-y)+f(y)=2(1-y)$



                          Set $y=x-1implies x=y+1$



                          $2f(y)+f(-y)=2(1+y)$



                          Eliminate $f(-y)$ between the two equations:



                          $implies f(y)=2y+frac23$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            $2f(x-1)+f(1-x)=2x$



                            Set $y=1-ximplies x=1-y$



                            $2f(-y)+f(y)=2(1-y)$



                            Set $y=x-1implies x=y+1$



                            $2f(y)+f(-y)=2(1+y)$



                            Eliminate $f(-y)$ between the two equations:



                            $implies f(y)=2y+frac23$






                            share|cite|improve this answer









                            $endgroup$



                            $2f(x-1)+f(1-x)=2x$



                            Set $y=1-ximplies x=1-y$



                            $2f(-y)+f(y)=2(1-y)$



                            Set $y=x-1implies x=y+1$



                            $2f(y)+f(-y)=2(1+y)$



                            Eliminate $f(-y)$ between the two equations:



                            $implies f(y)=2y+frac23$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 9 '18 at 20:34









                            Shubham JohriShubham Johri

                            5,097717




                            5,097717






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032931%2fif-2fx-1f1-x-2x-then-fx%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Ellipse (mathématiques)

                                Quarter-circle Tiles

                                Mont Emei