Solve IVP of $(u_t )^2 + (u_x )^2 − u^2 = 0$ using method of characteristics












1












$begingroup$



Consider the nonlinear first-order initial-value problem:
$$(u_t )^2 + (u_x )^2 − u^2 = 0$$
with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.



(a) Find its solution for all $t > 0$ using the method of
characteristics.



(b) Describe its behavior for all $t > 0$. Does it remain a continuous
function of $x$ for all $t$?



(c) Find $lim u(x, t)$.




My attempt:



Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



$$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$



Characteristics:



begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}



IVP:



$$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$



$$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$



$$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
$$



What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...










share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    Consider the nonlinear first-order initial-value problem:
    $$(u_t )^2 + (u_x )^2 − u^2 = 0$$
    with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.



    (a) Find its solution for all $t > 0$ using the method of
    characteristics.



    (b) Describe its behavior for all $t > 0$. Does it remain a continuous
    function of $x$ for all $t$?



    (c) Find $lim u(x, t)$.




    My attempt:



    Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



    $$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$



    Characteristics:



    begin{align}
    p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
    z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
    x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
    end{align}



    IVP:



    $$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$



    $$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$



    $$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
    $$



    What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$



      Consider the nonlinear first-order initial-value problem:
      $$(u_t )^2 + (u_x )^2 − u^2 = 0$$
      with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.



      (a) Find its solution for all $t > 0$ using the method of
      characteristics.



      (b) Describe its behavior for all $t > 0$. Does it remain a continuous
      function of $x$ for all $t$?



      (c) Find $lim u(x, t)$.




      My attempt:



      Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



      $$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$



      Characteristics:



      begin{align}
      p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
      z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
      x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
      end{align}



      IVP:



      $$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$



      $$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$



      $$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
      $$



      What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...










      share|cite|improve this question











      $endgroup$





      Consider the nonlinear first-order initial-value problem:
      $$(u_t )^2 + (u_x )^2 − u^2 = 0$$
      with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.



      (a) Find its solution for all $t > 0$ using the method of
      characteristics.



      (b) Describe its behavior for all $t > 0$. Does it remain a continuous
      function of $x$ for all $t$?



      (c) Find $lim u(x, t)$.




      My attempt:



      Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



      $$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$



      Characteristics:



      begin{align}
      p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
      z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
      x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
      end{align}



      IVP:



      $$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$



      $$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$



      $$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
      $$



      What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...







      pde characteristics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 10 '18 at 17:06









      Harry49

      6,18331132




      6,18331132










      asked Dec 9 '18 at 19:16









      dxdydzdxdydz

      3009




      3009






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          $$(u_t )^2 + (u_x )^2 = u^2 $$
          $$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
          HINT:



          $u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
          $$(v_t )^2 + (v_x )^2 =1$$
          $$v(x,0)=-sqrt{1+x^2}$$
          This kind of PDE is well known (Eikonal PDE) :



          https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).



          https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.



          https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.



          Of course, the boundary conditions are diferent, but with the same method you will find the solution :
          $$v(x,t)=-sqrt{(t+1)^2+x^2}$$
          $$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So u is a continuous function of x for all t, can we say anything else about the behavior of u?
            $endgroup$
            – dxdydz
            Dec 11 '18 at 0:34










          • $begingroup$
            $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
            $endgroup$
            – JJacquelin
            Dec 11 '18 at 13:54











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032822%2fsolve-ivp-of-u-t-2-u-x-2-%25e2%2588%2592-u2-0-using-method-of-characteristics%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          $$(u_t )^2 + (u_x )^2 = u^2 $$
          $$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
          HINT:



          $u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
          $$(v_t )^2 + (v_x )^2 =1$$
          $$v(x,0)=-sqrt{1+x^2}$$
          This kind of PDE is well known (Eikonal PDE) :



          https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).



          https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.



          https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.



          Of course, the boundary conditions are diferent, but with the same method you will find the solution :
          $$v(x,t)=-sqrt{(t+1)^2+x^2}$$
          $$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So u is a continuous function of x for all t, can we say anything else about the behavior of u?
            $endgroup$
            – dxdydz
            Dec 11 '18 at 0:34










          • $begingroup$
            $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
            $endgroup$
            – JJacquelin
            Dec 11 '18 at 13:54
















          1












          $begingroup$

          $$(u_t )^2 + (u_x )^2 = u^2 $$
          $$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
          HINT:



          $u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
          $$(v_t )^2 + (v_x )^2 =1$$
          $$v(x,0)=-sqrt{1+x^2}$$
          This kind of PDE is well known (Eikonal PDE) :



          https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).



          https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.



          https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.



          Of course, the boundary conditions are diferent, but with the same method you will find the solution :
          $$v(x,t)=-sqrt{(t+1)^2+x^2}$$
          $$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So u is a continuous function of x for all t, can we say anything else about the behavior of u?
            $endgroup$
            – dxdydz
            Dec 11 '18 at 0:34










          • $begingroup$
            $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
            $endgroup$
            – JJacquelin
            Dec 11 '18 at 13:54














          1












          1








          1





          $begingroup$

          $$(u_t )^2 + (u_x )^2 = u^2 $$
          $$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
          HINT:



          $u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
          $$(v_t )^2 + (v_x )^2 =1$$
          $$v(x,0)=-sqrt{1+x^2}$$
          This kind of PDE is well known (Eikonal PDE) :



          https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).



          https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.



          https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.



          Of course, the boundary conditions are diferent, but with the same method you will find the solution :
          $$v(x,t)=-sqrt{(t+1)^2+x^2}$$
          $$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$






          share|cite|improve this answer











          $endgroup$



          $$(u_t )^2 + (u_x )^2 = u^2 $$
          $$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
          HINT:



          $u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
          $$(v_t )^2 + (v_x )^2 =1$$
          $$v(x,0)=-sqrt{1+x^2}$$
          This kind of PDE is well known (Eikonal PDE) :



          https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).



          https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.



          https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.



          Of course, the boundary conditions are diferent, but with the same method you will find the solution :
          $$v(x,t)=-sqrt{(t+1)^2+x^2}$$
          $$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 10 '18 at 12:58

























          answered Dec 10 '18 at 12:47









          JJacquelinJJacquelin

          43.4k21853




          43.4k21853












          • $begingroup$
            So u is a continuous function of x for all t, can we say anything else about the behavior of u?
            $endgroup$
            – dxdydz
            Dec 11 '18 at 0:34










          • $begingroup$
            $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
            $endgroup$
            – JJacquelin
            Dec 11 '18 at 13:54


















          • $begingroup$
            So u is a continuous function of x for all t, can we say anything else about the behavior of u?
            $endgroup$
            – dxdydz
            Dec 11 '18 at 0:34










          • $begingroup$
            $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
            $endgroup$
            – JJacquelin
            Dec 11 '18 at 13:54
















          $begingroup$
          So u is a continuous function of x for all t, can we say anything else about the behavior of u?
          $endgroup$
          – dxdydz
          Dec 11 '18 at 0:34




          $begingroup$
          So u is a continuous function of x for all t, can we say anything else about the behavior of u?
          $endgroup$
          – dxdydz
          Dec 11 '18 at 0:34












          $begingroup$
          $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
          $endgroup$
          – JJacquelin
          Dec 11 '18 at 13:54




          $begingroup$
          $u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
          $endgroup$
          – JJacquelin
          Dec 11 '18 at 13:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032822%2fsolve-ivp-of-u-t-2-u-x-2-%25e2%2588%2592-u2-0-using-method-of-characteristics%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei