Chernoff Bound Variantion.











up vote
0
down vote

favorite












How can we prove
$latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)



When I have already proved that:
$latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)



How can i extend the second Prof to show that (1) is also true.




Solution to 2



$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
> 0 leq delta leq 1 quad quad $
(1)



Consider the denominator part to be,



$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
> quad $
(2)



We can apply Taylor’s Series on,



$ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $



Therefore,



$ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
> frac{delta^4}{4} + ... quad quad $
(a)



$ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
> frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $
(b)



Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,



$ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
> frac{delta^3}{6} + ... $



Ignoring higher order terms,



$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^3}{6} $



We can further write it as,



$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta.delta^2}{6} $



And take an assumption such that,



$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^2}{6} $



$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $



Now, from Eq. 2,



$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
> e^{delta+ frac{delta^2}{3}} $



Therefore, Eq. 1 becomes,



$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
> frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
> frac{delta^2}{3}}}]^{mu} $



$ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $











share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    How can we prove
    $latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)



    When I have already proved that:
    $latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)



    How can i extend the second Prof to show that (1) is also true.




    Solution to 2



    $ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
    > delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
    > 0 leq delta leq 1 quad quad $
    (1)



    Consider the denominator part to be,



    $ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
    > quad $
    (2)



    We can apply Taylor’s Series on,



    $ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $



    Therefore,



    $ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
    > frac{delta^4}{4} + ... quad quad $
    (a)



    $ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
    > frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $
    (b)



    Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,



    $ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
    > frac{delta^3}{6} + ... $



    Ignoring higher order terms,



    $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
    > frac{delta^3}{6} $



    We can further write it as,



    $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
    > frac{delta.delta^2}{6} $



    And take an assumption such that,



    $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
    > frac{delta^2}{6} $



    $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $



    Now, from Eq. 2,



    $ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
    > e^{delta+ frac{delta^2}{3}} $



    Therefore, Eq. 1 becomes,



    $ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
    > delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
    > frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
    > frac{delta^2}{3}}}]^{mu} $



    $ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $











    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      How can we prove
      $latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)



      When I have already proved that:
      $latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)



      How can i extend the second Prof to show that (1) is also true.




      Solution to 2



      $ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
      > delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
      > 0 leq delta leq 1 quad quad $
      (1)



      Consider the denominator part to be,



      $ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
      > quad $
      (2)



      We can apply Taylor’s Series on,



      $ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $



      Therefore,



      $ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
      > frac{delta^4}{4} + ... quad quad $
      (a)



      $ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
      > frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $
      (b)



      Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,



      $ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
      > frac{delta^3}{6} + ... $



      Ignoring higher order terms,



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
      > frac{delta^3}{6} $



      We can further write it as,



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
      > frac{delta.delta^2}{6} $



      And take an assumption such that,



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
      > frac{delta^2}{6} $



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $



      Now, from Eq. 2,



      $ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
      > e^{delta+ frac{delta^2}{3}} $



      Therefore, Eq. 1 becomes,



      $ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
      > delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
      > frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
      > frac{delta^2}{3}}}]^{mu} $



      $ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $











      share|cite|improve this question













      How can we prove
      $latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)



      When I have already proved that:
      $latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)



      How can i extend the second Prof to show that (1) is also true.




      Solution to 2



      $ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
      > delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
      > 0 leq delta leq 1 quad quad $
      (1)



      Consider the denominator part to be,



      $ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
      > quad $
      (2)



      We can apply Taylor’s Series on,



      $ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $



      Therefore,



      $ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
      > frac{delta^4}{4} + ... quad quad $
      (a)



      $ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
      > frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $
      (b)



      Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,



      $ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
      > frac{delta^3}{6} + ... $



      Ignoring higher order terms,



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
      > frac{delta^3}{6} $



      We can further write it as,



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
      > frac{delta.delta^2}{6} $



      And take an assumption such that,



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
      > frac{delta^2}{6} $



      $ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $



      Now, from Eq. 2,



      $ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
      > e^{delta+ frac{delta^2}{3}} $



      Therefore, Eq. 1 becomes,



      $ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
      > delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
      > frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
      > frac{delta^2}{3}}}]^{mu} $



      $ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $








      probability-theory inequality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 21 at 21:43









      Muhammad Fasiurrehman Sohi

      137




      137



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008411%2fchernoff-bound-variantion%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008411%2fchernoff-bound-variantion%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei