pytorch learn looper [on hold]











up vote
0
down vote

favorite












This code contains some routines for training cnn. Could you please point at any things you find wrong or ugly? Thanks.



class Trainer(object):
def __init__(self, criterion,
metric,
optimizer,
model_name,
model,
base_checkpoint_name=None,
device=0,
dummy_input=None):
'''
:param watcher_env: environment for visdom
:param criterion - loss function
'''
if base_checkpoint_name is None:
self.base_checkpoint_name = model_name
else:
self.base_checkpoint_name = base_checkpoint_name

self.metric = metric
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = ReduceLROnPlateau(optimizer, patience=2, verbose=True)
self.best_loss = np.inf
self.model_name = model_name
self.device = device
self.epoch_num = 0
self.model = model

self.logger = create_logger(model_name + '.log')
self.writer = SummaryWriter(log_dir='/tmp/runs/')
self.counters = {}

if dummy_input is not None:
self._plot_graph(dummy_input)

@staticmethod
def save_checkpoint(state, name):
print('saving state at', name)
torch.save(state, name)

def get_checkpoint_name(self, loss):
return self.base_checkpoint_name + '_best.pth.tar'

def is_best(self, avg_loss):
best = avg_loss < self.best_loss
if best:
self.best_loss = avg_loss

return best

def validate(self, val_loader):
batch_time = AverageMeter()
losses = AverageMeter()
metrics = AverageMeter()

self.model.eval()

end = time.time()
tqdm_val_loader = tqdm(enumerate(val_loader))
for batch_idx, (input, target) in tqdm_val_loader:
with torch.no_grad():
input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var)
metrics.update(metric_val)
tqdm_val_loader.set_description('val loss:%s, val metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)

self._log_data(input, target, output, 'val_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'val_it_metric')

end = time.time()

self._log_metric({
'metric': metrics.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'val_epoch_metric')

self.scheduler.step(losses.avg)

if self.is_best(losses.avg):
self.save_checkpoint(self.model.state_dict(), self.get_checkpoint_name(losses.avg))

self.epoch_num += 1
return losses.avg, metrics.avg

def update_train_epoch_stats(self, loss, metric):
self.epoch_train_losses.append(loss)
self.epoch_train_metrics.append(metric)

def train(self, train_loader):
batch_time, data_time, losses, metric = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

self.model.train()

end = time.time()
train_tqdm_iterator = tqdm(enumerate(train_loader))
for batch_idx, (input, target) in train_tqdm_iterator:
data_time.update(time.time() - end)

input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

with torch.no_grad():
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var) # todo - add output dimention assertion
metric.update(metric_val)
train_tqdm_iterator.set_description('train loss:%s, train metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)
end = time.time()

self._log_data(input, target, output, 'train_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'train_it_metric')

self._log_metric({
'metric': metric.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'train_epoch_metric')
return losses.avg, metric.avg

def _log_data(self, input, target, output, tag):
it = self._get_it(tag)
self.writer.add_image(tag, input[:, 0:3, :, :], it)

def _log_metric(self, metrics_dict, tag):
it = self._get_it(tag)

result = 'tag: ' + tag
for k in metrics_dict:
self.writer.add_scalar(tag + '_' + k, metrics_dict[k], it)
result += ' ,' + k + '=' + str(metrics_dict[k])

result += ', iteration ' + str(it)

self.logger.debug(result)

def _get_it(self, tag):
if tag in self.counters.keys():
result = self.counters[tag]
self.counters[tag] += 1
return result
else:
self.counters[tag] = 0
return 0

def _plot_graph(self, dummy_input):
self.writer.add_graph(self.model, dummy_input)









share|improve this question









New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











put on hold as off-topic by Toby Speight, Ludisposed, IEatBagels, Sᴀᴍ Onᴇᴌᴀ, alecxe 9 hours ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Lacks concrete context: Code Review requires concrete code from a project, with sufficient context for reviewers to understand how that code is used. Pseudocode, stub code, hypothetical code, obfuscated code, and generic best practices are outside the scope of this site." – Toby Speight, Ludisposed, Sᴀᴍ Onᴇᴌᴀ, alecxe

If this question can be reworded to fit the rules in the help center, please edit the question.









  • 1




    Can add some more information on what this code is trying to achieve, how to run? Currently this post lacks context
    – Ludisposed
    12 hours ago















up vote
0
down vote

favorite












This code contains some routines for training cnn. Could you please point at any things you find wrong or ugly? Thanks.



class Trainer(object):
def __init__(self, criterion,
metric,
optimizer,
model_name,
model,
base_checkpoint_name=None,
device=0,
dummy_input=None):
'''
:param watcher_env: environment for visdom
:param criterion - loss function
'''
if base_checkpoint_name is None:
self.base_checkpoint_name = model_name
else:
self.base_checkpoint_name = base_checkpoint_name

self.metric = metric
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = ReduceLROnPlateau(optimizer, patience=2, verbose=True)
self.best_loss = np.inf
self.model_name = model_name
self.device = device
self.epoch_num = 0
self.model = model

self.logger = create_logger(model_name + '.log')
self.writer = SummaryWriter(log_dir='/tmp/runs/')
self.counters = {}

if dummy_input is not None:
self._plot_graph(dummy_input)

@staticmethod
def save_checkpoint(state, name):
print('saving state at', name)
torch.save(state, name)

def get_checkpoint_name(self, loss):
return self.base_checkpoint_name + '_best.pth.tar'

def is_best(self, avg_loss):
best = avg_loss < self.best_loss
if best:
self.best_loss = avg_loss

return best

def validate(self, val_loader):
batch_time = AverageMeter()
losses = AverageMeter()
metrics = AverageMeter()

self.model.eval()

end = time.time()
tqdm_val_loader = tqdm(enumerate(val_loader))
for batch_idx, (input, target) in tqdm_val_loader:
with torch.no_grad():
input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var)
metrics.update(metric_val)
tqdm_val_loader.set_description('val loss:%s, val metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)

self._log_data(input, target, output, 'val_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'val_it_metric')

end = time.time()

self._log_metric({
'metric': metrics.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'val_epoch_metric')

self.scheduler.step(losses.avg)

if self.is_best(losses.avg):
self.save_checkpoint(self.model.state_dict(), self.get_checkpoint_name(losses.avg))

self.epoch_num += 1
return losses.avg, metrics.avg

def update_train_epoch_stats(self, loss, metric):
self.epoch_train_losses.append(loss)
self.epoch_train_metrics.append(metric)

def train(self, train_loader):
batch_time, data_time, losses, metric = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

self.model.train()

end = time.time()
train_tqdm_iterator = tqdm(enumerate(train_loader))
for batch_idx, (input, target) in train_tqdm_iterator:
data_time.update(time.time() - end)

input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

with torch.no_grad():
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var) # todo - add output dimention assertion
metric.update(metric_val)
train_tqdm_iterator.set_description('train loss:%s, train metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)
end = time.time()

self._log_data(input, target, output, 'train_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'train_it_metric')

self._log_metric({
'metric': metric.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'train_epoch_metric')
return losses.avg, metric.avg

def _log_data(self, input, target, output, tag):
it = self._get_it(tag)
self.writer.add_image(tag, input[:, 0:3, :, :], it)

def _log_metric(self, metrics_dict, tag):
it = self._get_it(tag)

result = 'tag: ' + tag
for k in metrics_dict:
self.writer.add_scalar(tag + '_' + k, metrics_dict[k], it)
result += ' ,' + k + '=' + str(metrics_dict[k])

result += ', iteration ' + str(it)

self.logger.debug(result)

def _get_it(self, tag):
if tag in self.counters.keys():
result = self.counters[tag]
self.counters[tag] += 1
return result
else:
self.counters[tag] = 0
return 0

def _plot_graph(self, dummy_input):
self.writer.add_graph(self.model, dummy_input)









share|improve this question









New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











put on hold as off-topic by Toby Speight, Ludisposed, IEatBagels, Sᴀᴍ Onᴇᴌᴀ, alecxe 9 hours ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Lacks concrete context: Code Review requires concrete code from a project, with sufficient context for reviewers to understand how that code is used. Pseudocode, stub code, hypothetical code, obfuscated code, and generic best practices are outside the scope of this site." – Toby Speight, Ludisposed, Sᴀᴍ Onᴇᴌᴀ, alecxe

If this question can be reworded to fit the rules in the help center, please edit the question.









  • 1




    Can add some more information on what this code is trying to achieve, how to run? Currently this post lacks context
    – Ludisposed
    12 hours ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











This code contains some routines for training cnn. Could you please point at any things you find wrong or ugly? Thanks.



class Trainer(object):
def __init__(self, criterion,
metric,
optimizer,
model_name,
model,
base_checkpoint_name=None,
device=0,
dummy_input=None):
'''
:param watcher_env: environment for visdom
:param criterion - loss function
'''
if base_checkpoint_name is None:
self.base_checkpoint_name = model_name
else:
self.base_checkpoint_name = base_checkpoint_name

self.metric = metric
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = ReduceLROnPlateau(optimizer, patience=2, verbose=True)
self.best_loss = np.inf
self.model_name = model_name
self.device = device
self.epoch_num = 0
self.model = model

self.logger = create_logger(model_name + '.log')
self.writer = SummaryWriter(log_dir='/tmp/runs/')
self.counters = {}

if dummy_input is not None:
self._plot_graph(dummy_input)

@staticmethod
def save_checkpoint(state, name):
print('saving state at', name)
torch.save(state, name)

def get_checkpoint_name(self, loss):
return self.base_checkpoint_name + '_best.pth.tar'

def is_best(self, avg_loss):
best = avg_loss < self.best_loss
if best:
self.best_loss = avg_loss

return best

def validate(self, val_loader):
batch_time = AverageMeter()
losses = AverageMeter()
metrics = AverageMeter()

self.model.eval()

end = time.time()
tqdm_val_loader = tqdm(enumerate(val_loader))
for batch_idx, (input, target) in tqdm_val_loader:
with torch.no_grad():
input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var)
metrics.update(metric_val)
tqdm_val_loader.set_description('val loss:%s, val metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)

self._log_data(input, target, output, 'val_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'val_it_metric')

end = time.time()

self._log_metric({
'metric': metrics.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'val_epoch_metric')

self.scheduler.step(losses.avg)

if self.is_best(losses.avg):
self.save_checkpoint(self.model.state_dict(), self.get_checkpoint_name(losses.avg))

self.epoch_num += 1
return losses.avg, metrics.avg

def update_train_epoch_stats(self, loss, metric):
self.epoch_train_losses.append(loss)
self.epoch_train_metrics.append(metric)

def train(self, train_loader):
batch_time, data_time, losses, metric = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

self.model.train()

end = time.time()
train_tqdm_iterator = tqdm(enumerate(train_loader))
for batch_idx, (input, target) in train_tqdm_iterator:
data_time.update(time.time() - end)

input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

with torch.no_grad():
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var) # todo - add output dimention assertion
metric.update(metric_val)
train_tqdm_iterator.set_description('train loss:%s, train metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)
end = time.time()

self._log_data(input, target, output, 'train_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'train_it_metric')

self._log_metric({
'metric': metric.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'train_epoch_metric')
return losses.avg, metric.avg

def _log_data(self, input, target, output, tag):
it = self._get_it(tag)
self.writer.add_image(tag, input[:, 0:3, :, :], it)

def _log_metric(self, metrics_dict, tag):
it = self._get_it(tag)

result = 'tag: ' + tag
for k in metrics_dict:
self.writer.add_scalar(tag + '_' + k, metrics_dict[k], it)
result += ' ,' + k + '=' + str(metrics_dict[k])

result += ', iteration ' + str(it)

self.logger.debug(result)

def _get_it(self, tag):
if tag in self.counters.keys():
result = self.counters[tag]
self.counters[tag] += 1
return result
else:
self.counters[tag] = 0
return 0

def _plot_graph(self, dummy_input):
self.writer.add_graph(self.model, dummy_input)









share|improve this question









New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











This code contains some routines for training cnn. Could you please point at any things you find wrong or ugly? Thanks.



class Trainer(object):
def __init__(self, criterion,
metric,
optimizer,
model_name,
model,
base_checkpoint_name=None,
device=0,
dummy_input=None):
'''
:param watcher_env: environment for visdom
:param criterion - loss function
'''
if base_checkpoint_name is None:
self.base_checkpoint_name = model_name
else:
self.base_checkpoint_name = base_checkpoint_name

self.metric = metric
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = ReduceLROnPlateau(optimizer, patience=2, verbose=True)
self.best_loss = np.inf
self.model_name = model_name
self.device = device
self.epoch_num = 0
self.model = model

self.logger = create_logger(model_name + '.log')
self.writer = SummaryWriter(log_dir='/tmp/runs/')
self.counters = {}

if dummy_input is not None:
self._plot_graph(dummy_input)

@staticmethod
def save_checkpoint(state, name):
print('saving state at', name)
torch.save(state, name)

def get_checkpoint_name(self, loss):
return self.base_checkpoint_name + '_best.pth.tar'

def is_best(self, avg_loss):
best = avg_loss < self.best_loss
if best:
self.best_loss = avg_loss

return best

def validate(self, val_loader):
batch_time = AverageMeter()
losses = AverageMeter()
metrics = AverageMeter()

self.model.eval()

end = time.time()
tqdm_val_loader = tqdm(enumerate(val_loader))
for batch_idx, (input, target) in tqdm_val_loader:
with torch.no_grad():
input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var)
metrics.update(metric_val)
tqdm_val_loader.set_description('val loss:%s, val metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)

self._log_data(input, target, output, 'val_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'val_it_metric')

end = time.time()

self._log_metric({
'metric': metrics.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'val_epoch_metric')

self.scheduler.step(losses.avg)

if self.is_best(losses.avg):
self.save_checkpoint(self.model.state_dict(), self.get_checkpoint_name(losses.avg))

self.epoch_num += 1
return losses.avg, metrics.avg

def update_train_epoch_stats(self, loss, metric):
self.epoch_train_losses.append(loss)
self.epoch_train_metrics.append(metric)

def train(self, train_loader):
batch_time, data_time, losses, metric = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

self.model.train()

end = time.time()
train_tqdm_iterator = tqdm(enumerate(train_loader))
for batch_idx, (input, target) in train_tqdm_iterator:
data_time.update(time.time() - end)

input_var = input.to(self.device)
target_var = target.to(self.device)

output = self.model(input_var)

loss = self.criterion(output, target_var)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

with torch.no_grad():
loss_scalar = loss.item()
losses.update(loss_scalar)
metric_val = self.metric(output, target_var) # todo - add output dimention assertion
metric.update(metric_val)
train_tqdm_iterator.set_description('train loss:%s, train metric: %s' %
(str(loss_scalar), str(metric_val)))

batch_time.update(time.time() - end)
end = time.time()

self._log_data(input, target, output, 'train_it_data')
self._log_metric({
'metric': metric_val,
'loss': loss_scalar,
'batch_time': time.time() - end
}, 'train_it_metric')

self._log_metric({
'metric': metric.avg,
'loss': losses.avg,
'batch_time': batch_time.avg
}, 'train_epoch_metric')
return losses.avg, metric.avg

def _log_data(self, input, target, output, tag):
it = self._get_it(tag)
self.writer.add_image(tag, input[:, 0:3, :, :], it)

def _log_metric(self, metrics_dict, tag):
it = self._get_it(tag)

result = 'tag: ' + tag
for k in metrics_dict:
self.writer.add_scalar(tag + '_' + k, metrics_dict[k], it)
result += ' ,' + k + '=' + str(metrics_dict[k])

result += ', iteration ' + str(it)

self.logger.debug(result)

def _get_it(self, tag):
if tag in self.counters.keys():
result = self.counters[tag]
self.counters[tag] += 1
return result
else:
self.counters[tag] = 0
return 0

def _plot_graph(self, dummy_input):
self.writer.add_graph(self.model, dummy_input)






python pytorch






share|improve this question









New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 12 hours ago









Ludisposed

6,84421959




6,84421959






New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 13 hours ago









Артем Лян

1




1




New contributor




Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Артем Лян is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as off-topic by Toby Speight, Ludisposed, IEatBagels, Sᴀᴍ Onᴇᴌᴀ, alecxe 9 hours ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Lacks concrete context: Code Review requires concrete code from a project, with sufficient context for reviewers to understand how that code is used. Pseudocode, stub code, hypothetical code, obfuscated code, and generic best practices are outside the scope of this site." – Toby Speight, Ludisposed, Sᴀᴍ Onᴇᴌᴀ, alecxe

If this question can be reworded to fit the rules in the help center, please edit the question.




put on hold as off-topic by Toby Speight, Ludisposed, IEatBagels, Sᴀᴍ Onᴇᴌᴀ, alecxe 9 hours ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Lacks concrete context: Code Review requires concrete code from a project, with sufficient context for reviewers to understand how that code is used. Pseudocode, stub code, hypothetical code, obfuscated code, and generic best practices are outside the scope of this site." – Toby Speight, Ludisposed, Sᴀᴍ Onᴇᴌᴀ, alecxe

If this question can be reworded to fit the rules in the help center, please edit the question.








  • 1




    Can add some more information on what this code is trying to achieve, how to run? Currently this post lacks context
    – Ludisposed
    12 hours ago














  • 1




    Can add some more information on what this code is trying to achieve, how to run? Currently this post lacks context
    – Ludisposed
    12 hours ago








1




1




Can add some more information on what this code is trying to achieve, how to run? Currently this post lacks context
– Ludisposed
12 hours ago




Can add some more information on what this code is trying to achieve, how to run? Currently this post lacks context
– Ludisposed
12 hours ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote













You have a docstring for __init__ (which is good; not enough people do this) but it's both wrong and incomplete. Add entries for every parameter and remove watcher_env.



This:



    if base_checkpoint_name is None:
self.base_checkpoint_name = model_name
else:
self.base_checkpoint_name = base_checkpoint_name


can be



self.base_checkpoint_name = base_checkpoint_name or model_name


This:



def is_best(self, avg_loss):
best = avg_loss < self.best_loss
if best:
self.best_loss = avg_loss


has a few problems. First, the name is_best suggests that it returns a boolean and doesn't change anything, which it does. Perhaps you want to rename it to take_best. Also, the contents of the function can be replaced with



if self.best_loss > avg_loss:
self.best_loss = avg_loss
return True
return False


Try replacing this string:



'val loss:%s, val metric: %s' % (str(loss_scalar), str(metric_val))


with this:



f'val loss: {loss_scalar}, val metric: {metric_val}'


This has a typo:



# todo - add output dimention assertion


It's "dimension".



This code:



    if tag in self.counters.keys():
result = self.counters[tag]
self.counters[tag] += 1
return result
else:
self.counters[tag] = 0
return 0


has a few issues. Don't do an "if in / key lookup" if possible; there should be fewer key lookups done. Also, the else is redundant because of the previous return. So:



    counter = self.counters.get(tag)
if counter is None:
self.counters[tag] = 0
return 0
self.counters[tag] = counter + 1
return counter





share|improve this answer




























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    You have a docstring for __init__ (which is good; not enough people do this) but it's both wrong and incomplete. Add entries for every parameter and remove watcher_env.



    This:



        if base_checkpoint_name is None:
    self.base_checkpoint_name = model_name
    else:
    self.base_checkpoint_name = base_checkpoint_name


    can be



    self.base_checkpoint_name = base_checkpoint_name or model_name


    This:



    def is_best(self, avg_loss):
    best = avg_loss < self.best_loss
    if best:
    self.best_loss = avg_loss


    has a few problems. First, the name is_best suggests that it returns a boolean and doesn't change anything, which it does. Perhaps you want to rename it to take_best. Also, the contents of the function can be replaced with



    if self.best_loss > avg_loss:
    self.best_loss = avg_loss
    return True
    return False


    Try replacing this string:



    'val loss:%s, val metric: %s' % (str(loss_scalar), str(metric_val))


    with this:



    f'val loss: {loss_scalar}, val metric: {metric_val}'


    This has a typo:



    # todo - add output dimention assertion


    It's "dimension".



    This code:



        if tag in self.counters.keys():
    result = self.counters[tag]
    self.counters[tag] += 1
    return result
    else:
    self.counters[tag] = 0
    return 0


    has a few issues. Don't do an "if in / key lookup" if possible; there should be fewer key lookups done. Also, the else is redundant because of the previous return. So:



        counter = self.counters.get(tag)
    if counter is None:
    self.counters[tag] = 0
    return 0
    self.counters[tag] = counter + 1
    return counter





    share|improve this answer

























      up vote
      0
      down vote













      You have a docstring for __init__ (which is good; not enough people do this) but it's both wrong and incomplete. Add entries for every parameter and remove watcher_env.



      This:



          if base_checkpoint_name is None:
      self.base_checkpoint_name = model_name
      else:
      self.base_checkpoint_name = base_checkpoint_name


      can be



      self.base_checkpoint_name = base_checkpoint_name or model_name


      This:



      def is_best(self, avg_loss):
      best = avg_loss < self.best_loss
      if best:
      self.best_loss = avg_loss


      has a few problems. First, the name is_best suggests that it returns a boolean and doesn't change anything, which it does. Perhaps you want to rename it to take_best. Also, the contents of the function can be replaced with



      if self.best_loss > avg_loss:
      self.best_loss = avg_loss
      return True
      return False


      Try replacing this string:



      'val loss:%s, val metric: %s' % (str(loss_scalar), str(metric_val))


      with this:



      f'val loss: {loss_scalar}, val metric: {metric_val}'


      This has a typo:



      # todo - add output dimention assertion


      It's "dimension".



      This code:



          if tag in self.counters.keys():
      result = self.counters[tag]
      self.counters[tag] += 1
      return result
      else:
      self.counters[tag] = 0
      return 0


      has a few issues. Don't do an "if in / key lookup" if possible; there should be fewer key lookups done. Also, the else is redundant because of the previous return. So:



          counter = self.counters.get(tag)
      if counter is None:
      self.counters[tag] = 0
      return 0
      self.counters[tag] = counter + 1
      return counter





      share|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        You have a docstring for __init__ (which is good; not enough people do this) but it's both wrong and incomplete. Add entries for every parameter and remove watcher_env.



        This:



            if base_checkpoint_name is None:
        self.base_checkpoint_name = model_name
        else:
        self.base_checkpoint_name = base_checkpoint_name


        can be



        self.base_checkpoint_name = base_checkpoint_name or model_name


        This:



        def is_best(self, avg_loss):
        best = avg_loss < self.best_loss
        if best:
        self.best_loss = avg_loss


        has a few problems. First, the name is_best suggests that it returns a boolean and doesn't change anything, which it does. Perhaps you want to rename it to take_best. Also, the contents of the function can be replaced with



        if self.best_loss > avg_loss:
        self.best_loss = avg_loss
        return True
        return False


        Try replacing this string:



        'val loss:%s, val metric: %s' % (str(loss_scalar), str(metric_val))


        with this:



        f'val loss: {loss_scalar}, val metric: {metric_val}'


        This has a typo:



        # todo - add output dimention assertion


        It's "dimension".



        This code:



            if tag in self.counters.keys():
        result = self.counters[tag]
        self.counters[tag] += 1
        return result
        else:
        self.counters[tag] = 0
        return 0


        has a few issues. Don't do an "if in / key lookup" if possible; there should be fewer key lookups done. Also, the else is redundant because of the previous return. So:



            counter = self.counters.get(tag)
        if counter is None:
        self.counters[tag] = 0
        return 0
        self.counters[tag] = counter + 1
        return counter





        share|improve this answer












        You have a docstring for __init__ (which is good; not enough people do this) but it's both wrong and incomplete. Add entries for every parameter and remove watcher_env.



        This:



            if base_checkpoint_name is None:
        self.base_checkpoint_name = model_name
        else:
        self.base_checkpoint_name = base_checkpoint_name


        can be



        self.base_checkpoint_name = base_checkpoint_name or model_name


        This:



        def is_best(self, avg_loss):
        best = avg_loss < self.best_loss
        if best:
        self.best_loss = avg_loss


        has a few problems. First, the name is_best suggests that it returns a boolean and doesn't change anything, which it does. Perhaps you want to rename it to take_best. Also, the contents of the function can be replaced with



        if self.best_loss > avg_loss:
        self.best_loss = avg_loss
        return True
        return False


        Try replacing this string:



        'val loss:%s, val metric: %s' % (str(loss_scalar), str(metric_val))


        with this:



        f'val loss: {loss_scalar}, val metric: {metric_val}'


        This has a typo:



        # todo - add output dimention assertion


        It's "dimension".



        This code:



            if tag in self.counters.keys():
        result = self.counters[tag]
        self.counters[tag] += 1
        return result
        else:
        self.counters[tag] = 0
        return 0


        has a few issues. Don't do an "if in / key lookup" if possible; there should be fewer key lookups done. Also, the else is redundant because of the previous return. So:



            counter = self.counters.get(tag)
        if counter is None:
        self.counters[tag] = 0
        return 0
        self.counters[tag] = counter + 1
        return counter






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 11 hours ago









        Reinderien

        1,887616




        1,887616















            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei