Use the $epsilon - delta$ definition to verify that $lim_{(x,y)to(0,0)}frac{x^3-y^3}{x^2+y^2} = 0$?...











up vote
-3
down vote

favorite













This question already has an answer here:




  • Finding the limit of a 2-dimensional function

    2 answers




I know that I have to find a $epsilon > 0$ s.t. |$frac{x^3-y^3}{x^2+y^2}$|<$epsilon$ whenever $0<sqrt{x^2+y^2}<delta$ but what are the steps to proving this?



I'm looking for an answer which shows the steps as well as explains the intuition.



Thanks










share|cite|improve this question















marked as duplicate by Decaf-Math, StubbornAtom, Trevor Gunn, GNUSupporter 8964民主女神 地下教會, amWhy calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 21 at 19:40


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 1




    This one is asking for it "by definition" whereas the other answers use shortcuts.
    – DanielV
    Nov 21 at 18:20















up vote
-3
down vote

favorite













This question already has an answer here:




  • Finding the limit of a 2-dimensional function

    2 answers




I know that I have to find a $epsilon > 0$ s.t. |$frac{x^3-y^3}{x^2+y^2}$|<$epsilon$ whenever $0<sqrt{x^2+y^2}<delta$ but what are the steps to proving this?



I'm looking for an answer which shows the steps as well as explains the intuition.



Thanks










share|cite|improve this question















marked as duplicate by Decaf-Math, StubbornAtom, Trevor Gunn, GNUSupporter 8964民主女神 地下教會, amWhy calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 21 at 19:40


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 1




    This one is asking for it "by definition" whereas the other answers use shortcuts.
    – DanielV
    Nov 21 at 18:20













up vote
-3
down vote

favorite









up vote
-3
down vote

favorite












This question already has an answer here:




  • Finding the limit of a 2-dimensional function

    2 answers




I know that I have to find a $epsilon > 0$ s.t. |$frac{x^3-y^3}{x^2+y^2}$|<$epsilon$ whenever $0<sqrt{x^2+y^2}<delta$ but what are the steps to proving this?



I'm looking for an answer which shows the steps as well as explains the intuition.



Thanks










share|cite|improve this question
















This question already has an answer here:




  • Finding the limit of a 2-dimensional function

    2 answers




I know that I have to find a $epsilon > 0$ s.t. |$frac{x^3-y^3}{x^2+y^2}$|<$epsilon$ whenever $0<sqrt{x^2+y^2}<delta$ but what are the steps to proving this?



I'm looking for an answer which shows the steps as well as explains the intuition.



Thanks





This question already has an answer here:




  • Finding the limit of a 2-dimensional function

    2 answers








calculus limits multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 17:37









StubbornAtom

5,00411138




5,00411138










asked Nov 21 at 17:29









K.M.

294112




294112




marked as duplicate by Decaf-Math, StubbornAtom, Trevor Gunn, GNUSupporter 8964民主女神 地下教會, amWhy calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 21 at 19:40


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by Decaf-Math, StubbornAtom, Trevor Gunn, GNUSupporter 8964民主女神 地下教會, amWhy calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 21 at 19:40


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    This one is asking for it "by definition" whereas the other answers use shortcuts.
    – DanielV
    Nov 21 at 18:20














  • 1




    This one is asking for it "by definition" whereas the other answers use shortcuts.
    – DanielV
    Nov 21 at 18:20








1




1




This one is asking for it "by definition" whereas the other answers use shortcuts.
– DanielV
Nov 21 at 18:20




This one is asking for it "by definition" whereas the other answers use shortcuts.
– DanielV
Nov 21 at 18:20










2 Answers
2






active

oldest

votes

















up vote
1
down vote



accepted










Numerator:



$|(x^3-y^3)|=$



$|(x-y)|(x^2+xy+y^2)|le$



$|x-y||x^2+y^2| +|xy|| le$



$|x-y||x^2+y^2| +|x|^2+|y|^2) le$



$2|x-y||x^2+y^2| le$



$ 2(|x|+|y|) (x^2+y^2)le$



$4 sqrt{x^2+y^2}(x^2+y^2)$.



Finally



$dfrac{|x^3-y^3|}{x^2+y^2} le 4sqrt{x^2+y^2}.$



Choose $delta =epsilon/4.$



Used: $x^2+y^2 ge 2|xy|;$



$|x| =sqrt{x^2} le sqrt{x^2+y^2}$,
$|y| =sqrt{y^2} le sqrt{x^2+y^2}$.






share|cite|improve this answer






























    up vote
    0
    down vote













    $$(forall y > 0 ~ exists r > 0 ~ forall bar x )~ 0 < | bar x - bar c | < r implies |f bar x - L| < y$$



    $(forall y > 0 ~ exists r > 0 ~ forall bar x )$ is equivalent to asking for the existence of a function $g$ that, given a maximum deviation from $L$, outputs the neighborhood $r$ that satisfies that maximum deviation. In other words, find the disc centered at $bar c$ with radius $g(y)$ such that every value of $f$ within that region is within $y$ of $L$. Symbolically:



    $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x - bar c | < g(y) implies |f bar x - L| < y$$



    Putting in the values for your problem:



    $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x | < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



    or to put more tersely, find $g : mathbb R to mathbb R$ such that for $bar x ne (0, 0)$
    $$|bar x| < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



    A polar substitution helps:



    $$r < g(y) implies left|frac{(rcos t)^3 - (rsin t)^3}{(rcos t)^2 + (rsin t)^2}right| < y$$



    Can you find the $g$ now? One more hint if you need it:




    $-1 le cos t, sin t le 1$







    share|cite|improve this answer




























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      1
      down vote



      accepted










      Numerator:



      $|(x^3-y^3)|=$



      $|(x-y)|(x^2+xy+y^2)|le$



      $|x-y||x^2+y^2| +|xy|| le$



      $|x-y||x^2+y^2| +|x|^2+|y|^2) le$



      $2|x-y||x^2+y^2| le$



      $ 2(|x|+|y|) (x^2+y^2)le$



      $4 sqrt{x^2+y^2}(x^2+y^2)$.



      Finally



      $dfrac{|x^3-y^3|}{x^2+y^2} le 4sqrt{x^2+y^2}.$



      Choose $delta =epsilon/4.$



      Used: $x^2+y^2 ge 2|xy|;$



      $|x| =sqrt{x^2} le sqrt{x^2+y^2}$,
      $|y| =sqrt{y^2} le sqrt{x^2+y^2}$.






      share|cite|improve this answer



























        up vote
        1
        down vote



        accepted










        Numerator:



        $|(x^3-y^3)|=$



        $|(x-y)|(x^2+xy+y^2)|le$



        $|x-y||x^2+y^2| +|xy|| le$



        $|x-y||x^2+y^2| +|x|^2+|y|^2) le$



        $2|x-y||x^2+y^2| le$



        $ 2(|x|+|y|) (x^2+y^2)le$



        $4 sqrt{x^2+y^2}(x^2+y^2)$.



        Finally



        $dfrac{|x^3-y^3|}{x^2+y^2} le 4sqrt{x^2+y^2}.$



        Choose $delta =epsilon/4.$



        Used: $x^2+y^2 ge 2|xy|;$



        $|x| =sqrt{x^2} le sqrt{x^2+y^2}$,
        $|y| =sqrt{y^2} le sqrt{x^2+y^2}$.






        share|cite|improve this answer

























          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Numerator:



          $|(x^3-y^3)|=$



          $|(x-y)|(x^2+xy+y^2)|le$



          $|x-y||x^2+y^2| +|xy|| le$



          $|x-y||x^2+y^2| +|x|^2+|y|^2) le$



          $2|x-y||x^2+y^2| le$



          $ 2(|x|+|y|) (x^2+y^2)le$



          $4 sqrt{x^2+y^2}(x^2+y^2)$.



          Finally



          $dfrac{|x^3-y^3|}{x^2+y^2} le 4sqrt{x^2+y^2}.$



          Choose $delta =epsilon/4.$



          Used: $x^2+y^2 ge 2|xy|;$



          $|x| =sqrt{x^2} le sqrt{x^2+y^2}$,
          $|y| =sqrt{y^2} le sqrt{x^2+y^2}$.






          share|cite|improve this answer














          Numerator:



          $|(x^3-y^3)|=$



          $|(x-y)|(x^2+xy+y^2)|le$



          $|x-y||x^2+y^2| +|xy|| le$



          $|x-y||x^2+y^2| +|x|^2+|y|^2) le$



          $2|x-y||x^2+y^2| le$



          $ 2(|x|+|y|) (x^2+y^2)le$



          $4 sqrt{x^2+y^2}(x^2+y^2)$.



          Finally



          $dfrac{|x^3-y^3|}{x^2+y^2} le 4sqrt{x^2+y^2}.$



          Choose $delta =epsilon/4.$



          Used: $x^2+y^2 ge 2|xy|;$



          $|x| =sqrt{x^2} le sqrt{x^2+y^2}$,
          $|y| =sqrt{y^2} le sqrt{x^2+y^2}$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 21 at 19:10

























          answered Nov 21 at 19:05









          Peter Szilas

          10.5k2720




          10.5k2720






















              up vote
              0
              down vote













              $$(forall y > 0 ~ exists r > 0 ~ forall bar x )~ 0 < | bar x - bar c | < r implies |f bar x - L| < y$$



              $(forall y > 0 ~ exists r > 0 ~ forall bar x )$ is equivalent to asking for the existence of a function $g$ that, given a maximum deviation from $L$, outputs the neighborhood $r$ that satisfies that maximum deviation. In other words, find the disc centered at $bar c$ with radius $g(y)$ such that every value of $f$ within that region is within $y$ of $L$. Symbolically:



              $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x - bar c | < g(y) implies |f bar x - L| < y$$



              Putting in the values for your problem:



              $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x | < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



              or to put more tersely, find $g : mathbb R to mathbb R$ such that for $bar x ne (0, 0)$
              $$|bar x| < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



              A polar substitution helps:



              $$r < g(y) implies left|frac{(rcos t)^3 - (rsin t)^3}{(rcos t)^2 + (rsin t)^2}right| < y$$



              Can you find the $g$ now? One more hint if you need it:




              $-1 le cos t, sin t le 1$







              share|cite|improve this answer

























                up vote
                0
                down vote













                $$(forall y > 0 ~ exists r > 0 ~ forall bar x )~ 0 < | bar x - bar c | < r implies |f bar x - L| < y$$



                $(forall y > 0 ~ exists r > 0 ~ forall bar x )$ is equivalent to asking for the existence of a function $g$ that, given a maximum deviation from $L$, outputs the neighborhood $r$ that satisfies that maximum deviation. In other words, find the disc centered at $bar c$ with radius $g(y)$ such that every value of $f$ within that region is within $y$ of $L$. Symbolically:



                $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x - bar c | < g(y) implies |f bar x - L| < y$$



                Putting in the values for your problem:



                $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x | < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



                or to put more tersely, find $g : mathbb R to mathbb R$ such that for $bar x ne (0, 0)$
                $$|bar x| < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



                A polar substitution helps:



                $$r < g(y) implies left|frac{(rcos t)^3 - (rsin t)^3}{(rcos t)^2 + (rsin t)^2}right| < y$$



                Can you find the $g$ now? One more hint if you need it:




                $-1 le cos t, sin t le 1$







                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  $$(forall y > 0 ~ exists r > 0 ~ forall bar x )~ 0 < | bar x - bar c | < r implies |f bar x - L| < y$$



                  $(forall y > 0 ~ exists r > 0 ~ forall bar x )$ is equivalent to asking for the existence of a function $g$ that, given a maximum deviation from $L$, outputs the neighborhood $r$ that satisfies that maximum deviation. In other words, find the disc centered at $bar c$ with radius $g(y)$ such that every value of $f$ within that region is within $y$ of $L$. Symbolically:



                  $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x - bar c | < g(y) implies |f bar x - L| < y$$



                  Putting in the values for your problem:



                  $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x | < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



                  or to put more tersely, find $g : mathbb R to mathbb R$ such that for $bar x ne (0, 0)$
                  $$|bar x| < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



                  A polar substitution helps:



                  $$r < g(y) implies left|frac{(rcos t)^3 - (rsin t)^3}{(rcos t)^2 + (rsin t)^2}right| < y$$



                  Can you find the $g$ now? One more hint if you need it:




                  $-1 le cos t, sin t le 1$







                  share|cite|improve this answer












                  $$(forall y > 0 ~ exists r > 0 ~ forall bar x )~ 0 < | bar x - bar c | < r implies |f bar x - L| < y$$



                  $(forall y > 0 ~ exists r > 0 ~ forall bar x )$ is equivalent to asking for the existence of a function $g$ that, given a maximum deviation from $L$, outputs the neighborhood $r$ that satisfies that maximum deviation. In other words, find the disc centered at $bar c$ with radius $g(y)$ such that every value of $f$ within that region is within $y$ of $L$. Symbolically:



                  $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x - bar c | < g(y) implies |f bar x - L| < y$$



                  Putting in the values for your problem:



                  $$(exists g : mathbb R to mathbb R ~forall y > 0 ~ forall bar x) ~ 0 < | bar x | < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



                  or to put more tersely, find $g : mathbb R to mathbb R$ such that for $bar x ne (0, 0)$
                  $$|bar x| < g(y) implies left|frac{x_1{}^3 - x_2{}^3}{x_1{}^2 + x_2{}^2}right| < y$$



                  A polar substitution helps:



                  $$r < g(y) implies left|frac{(rcos t)^3 - (rsin t)^3}{(rcos t)^2 + (rsin t)^2}right| < y$$



                  Can you find the $g$ now? One more hint if you need it:




                  $-1 le cos t, sin t le 1$








                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 21 at 18:19









                  DanielV

                  17.8k42754




                  17.8k42754















                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei