Set theory, functions and inverses
up vote
0
down vote
favorite
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
add a comment |
up vote
0
down vote
favorite
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
Inverse defined from the range of the given function is a function.
– Thomas Shelby
Nov 19 at 15:11
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
functions elementary-set-theory inverse-function
asked Nov 19 at 15:04
K. Meyer
11
11
Inverse defined from the range of the given function is a function.
– Thomas Shelby
Nov 19 at 15:11
add a comment |
Inverse defined from the range of the given function is a function.
– Thomas Shelby
Nov 19 at 15:11
Inverse defined from the range of the given function is a function.
– Thomas Shelby
Nov 19 at 15:11
Inverse defined from the range of the given function is a function.
– Thomas Shelby
Nov 19 at 15:11
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
add a comment |
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
add a comment |
up vote
0
down vote
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
answered Nov 19 at 15:25
Botond
5,1462732
5,1462732
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005039%2fset-theory-functions-and-inverses%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Inverse defined from the range of the given function is a function.
– Thomas Shelby
Nov 19 at 15:11