Tricky real integral: $int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi$

Multi tool use
Multi tool use











up vote
8
down vote

favorite
7












I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$



Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.



How can I tackle this integral?










share|cite|improve this question




















  • 2




    Have you heard of Cauchy integral theorem?
    – Frank W.
    2 days ago










  • It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
    – user170231
    2 days ago












  • $x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
    – herb steinberg
    2 days ago






  • 1




    You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
    – J.G.
    yesterday















up vote
8
down vote

favorite
7












I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$



Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.



How can I tackle this integral?










share|cite|improve this question




















  • 2




    Have you heard of Cauchy integral theorem?
    – Frank W.
    2 days ago










  • It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
    – user170231
    2 days ago












  • $x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
    – herb steinberg
    2 days ago






  • 1




    You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
    – J.G.
    yesterday













up vote
8
down vote

favorite
7









up vote
8
down vote

favorite
7






7





I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$



Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.



How can I tackle this integral?










share|cite|improve this question















I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$



Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.



How can I tackle this integral?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Martin Sleziak

44.5k7115268




44.5k7115268










asked 2 days ago









NMister

376110




376110








  • 2




    Have you heard of Cauchy integral theorem?
    – Frank W.
    2 days ago










  • It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
    – user170231
    2 days ago












  • $x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
    – herb steinberg
    2 days ago






  • 1




    You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
    – J.G.
    yesterday














  • 2




    Have you heard of Cauchy integral theorem?
    – Frank W.
    2 days ago










  • It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
    – user170231
    2 days ago












  • $x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
    – herb steinberg
    2 days ago






  • 1




    You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
    – J.G.
    yesterday








2




2




Have you heard of Cauchy integral theorem?
– Frank W.
2 days ago




Have you heard of Cauchy integral theorem?
– Frank W.
2 days ago












It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
2 days ago






It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
2 days ago














$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
2 days ago




$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
2 days ago




1




1




You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
yesterday




You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
yesterday










3 Answers
3






active

oldest

votes

















up vote
21
down vote













Write



$$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$



Then $I(0) = 2pi$, and for $alpha > 0$,



begin{align*}
I'(alpha)
&= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
&= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
&= 0.
end{align*}



So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.





A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by



$$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$



Then



$$ I'(r)
= int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
= left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
= 0 $$



and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.






share|cite|improve this answer






























    up vote
    4
    down vote













    Assuming that you could enjoy special functions.



    Consider
    $$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$



    $$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
    $$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
    $$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
    $$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
    t}right)right)$$

    $$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.






    share|cite|improve this answer






























      up vote
      0
      down vote













      Put $z=e^{it}$ and using the formulas:
      $$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$



      $$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$



      apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020916%2ftricky-real-integral-int-02-pi-e-cos2-t-cos-sin2-t-2-pi%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        21
        down vote













        Write



        $$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$



        Then $I(0) = 2pi$, and for $alpha > 0$,



        begin{align*}
        I'(alpha)
        &= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
        &= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
        &= 0.
        end{align*}



        So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.





        A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by



        $$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$



        Then



        $$ I'(r)
        = int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
        = left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
        = 0 $$



        and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.






        share|cite|improve this answer



























          up vote
          21
          down vote













          Write



          $$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$



          Then $I(0) = 2pi$, and for $alpha > 0$,



          begin{align*}
          I'(alpha)
          &= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
          &= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
          &= 0.
          end{align*}



          So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.





          A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by



          $$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$



          Then



          $$ I'(r)
          = int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
          = left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
          = 0 $$



          and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.






          share|cite|improve this answer

























            up vote
            21
            down vote










            up vote
            21
            down vote









            Write



            $$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$



            Then $I(0) = 2pi$, and for $alpha > 0$,



            begin{align*}
            I'(alpha)
            &= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
            &= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
            &= 0.
            end{align*}



            So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.





            A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by



            $$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$



            Then



            $$ I'(r)
            = int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
            = left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
            = 0 $$



            and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.






            share|cite|improve this answer














            Write



            $$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$



            Then $I(0) = 2pi$, and for $alpha > 0$,



            begin{align*}
            I'(alpha)
            &= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
            &= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
            &= 0.
            end{align*}



            So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.





            A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by



            $$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$



            Then



            $$ I'(r)
            = int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
            = left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
            = 0 $$



            and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday









            Mutantoe

            546411




            546411










            answered 2 days ago









            Sangchul Lee

            90.8k12163263




            90.8k12163263






















                up vote
                4
                down vote













                Assuming that you could enjoy special functions.



                Consider
                $$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$



                $$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
                $$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
                $$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
                $$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
                t}right)right)$$

                $$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.






                share|cite|improve this answer



























                  up vote
                  4
                  down vote













                  Assuming that you could enjoy special functions.



                  Consider
                  $$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$



                  $$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
                  $$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
                  $$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
                  $$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
                  t}right)right)$$

                  $$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.






                  share|cite|improve this answer

























                    up vote
                    4
                    down vote










                    up vote
                    4
                    down vote









                    Assuming that you could enjoy special functions.



                    Consider
                    $$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$



                    $$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
                    $$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
                    $$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
                    $$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
                    t}right)right)$$

                    $$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.






                    share|cite|improve this answer














                    Assuming that you could enjoy special functions.



                    Consider
                    $$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$



                    $$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
                    $$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
                    $$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
                    $$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
                    t}right)right)$$

                    $$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited yesterday

























                    answered 2 days ago









                    Claude Leibovici

                    117k1156131




                    117k1156131






















                        up vote
                        0
                        down vote













                        Put $z=e^{it}$ and using the formulas:
                        $$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$



                        $$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$



                        apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          Put $z=e^{it}$ and using the formulas:
                          $$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$



                          $$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$



                          apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            Put $z=e^{it}$ and using the formulas:
                            $$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$



                            $$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$



                            apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$






                            share|cite|improve this answer












                            Put $z=e^{it}$ and using the formulas:
                            $$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$



                            $$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$



                            apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered yesterday









                            Marios Gretsas

                            8,42511437




                            8,42511437






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020916%2ftricky-real-integral-int-02-pi-e-cos2-t-cos-sin2-t-2-pi%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Xm HS4hr9B9N
                                52 s uCc,VPJSjvysDhGMW,VPB87Ru6t,sp2m438J,F,s3,6S,DeEigADZK7ehq0qn8i 1g2p ha30pqn60q

                                Popular posts from this blog

                                Ellipse (mathématiques)

                                Mont Emei

                                Quarter-circle Tiles