Convergence of third moments when second moments are uniformly bounded.












2














Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.










share|cite|improve this question



























    2














    Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.










    share|cite|improve this question

























      2












      2








      2







      Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.










      share|cite|improve this question













      Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.







      integration probability-theory measure-theory weak-convergence






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 27 '18 at 21:30









      M. Ost

      483




      483






















          1 Answer
          1






          active

          oldest

          votes


















          1














          Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
          $$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
          On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
          $$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
          Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
          Thus, for $ngeq max{ N, n_0(N) } $
          $$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
          leq 0 + frac{c}{n} < varepsilon. $$

          Hence, we get
          $$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016325%2fconvergence-of-third-moments-when-second-moments-are-uniformly-bounded%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
            $$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
            On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
            $$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
            Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
            Thus, for $ngeq max{ N, n_0(N) } $
            $$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
            leq 0 + frac{c}{n} < varepsilon. $$

            Hence, we get
            $$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$






            share|cite|improve this answer




























              1














              Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
              $$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
              On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
              $$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
              Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
              Thus, for $ngeq max{ N, n_0(N) } $
              $$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
              leq 0 + frac{c}{n} < varepsilon. $$

              Hence, we get
              $$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$






              share|cite|improve this answer


























                1












                1








                1






                Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
                $$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
                On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
                $$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
                Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
                Thus, for $ngeq max{ N, n_0(N) } $
                $$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
                leq 0 + frac{c}{n} < varepsilon. $$

                Hence, we get
                $$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$






                share|cite|improve this answer














                Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
                $$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
                On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
                $$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
                Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
                Thus, for $ngeq max{ N, n_0(N) } $
                $$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
                leq 0 + frac{c}{n} < varepsilon. $$

                Hence, we get
                $$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 27 '18 at 22:27

























                answered Nov 27 '18 at 21:56









                Severin Schraven

                5,8281934




                5,8281934






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016325%2fconvergence-of-third-moments-when-second-moments-are-uniformly-bounded%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei