Probability it rains on random day
Problem
State of the weather in city can be modeled with simple probability. After rainy day it will rain the next day with probability of $0.5$ and after sunny day it will be sunny next day with probability of $0.9$. Let vector $vec{x_n}$ be
$$ vec{x_n} = begin{bmatrix} text{probability of sunny weather at day $n$} \ text{probability of rainy day at day $n$} end{bmatrix} $$
Probability of rainy and sunny weather for $n+1$:th day can be solved with matrix equation
$$ x_{n+1} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix} x_n $$
We can assume that $vec{x_0}=begin{bmatrix}1 & 0end{bmatrix}^T$. What happens when $x_{infty}$ ? What are probabilities for random day when $nrightarrow infty$
Attempt to solve
First we compute eigenvalues and eigenvectors for our matrix. We can compute eigenvalues easily by utilizing two facts about eigenvalues. $1)$ sum of eigenvalues is same as trace. $2)$ product of eigenvalues is same as determinant. Let matrix $A$ be
$$ textbf{A} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix}$$
Then we can note the equation as
$$ x_{n+1}=textbf{A}x_n $$
Then we can solve eigenvalues.
$$ begin{cases}
lambda_1 + lambda_2 = text{Tr}(textbf{A}) \
lambda_1cdot lambda_2= det(textbf{A}) \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 0.9 + 0.5 \
lambda_1cdot lambda_2= 0.9cdot 0.5 - 0.5 cdot 0.5 \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 1.4 \
lambda_1cdot lambda_2= 0.4 \
end{cases} $$
$$ implies lambda_1 = 0.4,lambda_2 = 1 $$
Eigenvectors can be acquired by solving $vec{x}$ from equation $(textbf{A}-lambda I)vec{x}=vec{0}$
$$
begin{bmatrix} 0.9 - lambda & 0.5 \ 0.1 & 0.5 - lambda end{bmatrix} begin{bmatrix} x_1 \ x_2 end{bmatrix} = begin{bmatrix} 0 \ 0 end{bmatrix}
$$
Now we have eigenvectors
$$ lambda_1 text{ gives } vec{x_{lambda1}} = begin{bmatrix} 5 \ 1 end{bmatrix}, lambda_2 text{ gives } vec{x_{lambda2}} = begin{bmatrix} -1 \ 1 end{bmatrix} $$
Eigenvectors are linearly independent so we can solve
$$ w_1 vec{x_{lambda1}} + w_2 vec{x_{lambda2}} = vec{x_0} $$
$$ implies w_1 begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 begin{bmatrix} -1 \ 1 end{bmatrix} = begin{bmatrix} 1 \ 0 end{bmatrix} $$
$$ implies begin{bmatrix} 5 & -1 \ 1 & 1 end{bmatrix} begin{bmatrix} w_1 \ w_2 end{bmatrix} = begin{bmatrix} 1 \0 end{bmatrix} $$
$$ implies w_1=1/6, w_2=-1/6 $$
I can write the original equation as:
$$ x_{n+1}=textbf{A}^n vec{x_{0}} = w_1 cdot lambda_1^n cdot vec{x_{lambda1}}+w_2 cdot lambda_2^n cdot vec{x_{lambda2}}$$
$$ x_{n+1} = w_1 cdot 0.4^n cdot begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 cdot 1^n cdot begin{bmatrix} -1 \ 1 end{bmatrix} implies w_2 begin{bmatrix} -1 \ 1 end{bmatrix}, text{ when } k rightarrow infty $$
Then we have $P("text{sunny}")= -1w_1$ and $p(text{"it is raining"})=w_1$
$$ P("text{sunny}") = frac{1}{6} approx 16.67% $$
$$ P("text{raining}") = -frac{1}{6} approx -16.67% $$
Which is quite confusing that i have negative probability ? I think something went wrong with these calculations but i cannot see what ?
probability matrices eigenvalues-eigenvectors markov-chains
add a comment |
Problem
State of the weather in city can be modeled with simple probability. After rainy day it will rain the next day with probability of $0.5$ and after sunny day it will be sunny next day with probability of $0.9$. Let vector $vec{x_n}$ be
$$ vec{x_n} = begin{bmatrix} text{probability of sunny weather at day $n$} \ text{probability of rainy day at day $n$} end{bmatrix} $$
Probability of rainy and sunny weather for $n+1$:th day can be solved with matrix equation
$$ x_{n+1} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix} x_n $$
We can assume that $vec{x_0}=begin{bmatrix}1 & 0end{bmatrix}^T$. What happens when $x_{infty}$ ? What are probabilities for random day when $nrightarrow infty$
Attempt to solve
First we compute eigenvalues and eigenvectors for our matrix. We can compute eigenvalues easily by utilizing two facts about eigenvalues. $1)$ sum of eigenvalues is same as trace. $2)$ product of eigenvalues is same as determinant. Let matrix $A$ be
$$ textbf{A} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix}$$
Then we can note the equation as
$$ x_{n+1}=textbf{A}x_n $$
Then we can solve eigenvalues.
$$ begin{cases}
lambda_1 + lambda_2 = text{Tr}(textbf{A}) \
lambda_1cdot lambda_2= det(textbf{A}) \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 0.9 + 0.5 \
lambda_1cdot lambda_2= 0.9cdot 0.5 - 0.5 cdot 0.5 \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 1.4 \
lambda_1cdot lambda_2= 0.4 \
end{cases} $$
$$ implies lambda_1 = 0.4,lambda_2 = 1 $$
Eigenvectors can be acquired by solving $vec{x}$ from equation $(textbf{A}-lambda I)vec{x}=vec{0}$
$$
begin{bmatrix} 0.9 - lambda & 0.5 \ 0.1 & 0.5 - lambda end{bmatrix} begin{bmatrix} x_1 \ x_2 end{bmatrix} = begin{bmatrix} 0 \ 0 end{bmatrix}
$$
Now we have eigenvectors
$$ lambda_1 text{ gives } vec{x_{lambda1}} = begin{bmatrix} 5 \ 1 end{bmatrix}, lambda_2 text{ gives } vec{x_{lambda2}} = begin{bmatrix} -1 \ 1 end{bmatrix} $$
Eigenvectors are linearly independent so we can solve
$$ w_1 vec{x_{lambda1}} + w_2 vec{x_{lambda2}} = vec{x_0} $$
$$ implies w_1 begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 begin{bmatrix} -1 \ 1 end{bmatrix} = begin{bmatrix} 1 \ 0 end{bmatrix} $$
$$ implies begin{bmatrix} 5 & -1 \ 1 & 1 end{bmatrix} begin{bmatrix} w_1 \ w_2 end{bmatrix} = begin{bmatrix} 1 \0 end{bmatrix} $$
$$ implies w_1=1/6, w_2=-1/6 $$
I can write the original equation as:
$$ x_{n+1}=textbf{A}^n vec{x_{0}} = w_1 cdot lambda_1^n cdot vec{x_{lambda1}}+w_2 cdot lambda_2^n cdot vec{x_{lambda2}}$$
$$ x_{n+1} = w_1 cdot 0.4^n cdot begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 cdot 1^n cdot begin{bmatrix} -1 \ 1 end{bmatrix} implies w_2 begin{bmatrix} -1 \ 1 end{bmatrix}, text{ when } k rightarrow infty $$
Then we have $P("text{sunny}")= -1w_1$ and $p(text{"it is raining"})=w_1$
$$ P("text{sunny}") = frac{1}{6} approx 16.67% $$
$$ P("text{raining}") = -frac{1}{6} approx -16.67% $$
Which is quite confusing that i have negative probability ? I think something went wrong with these calculations but i cannot see what ?
probability matrices eigenvalues-eigenvectors markov-chains
2
A quick way to get the answer is to note that the probability that it is raining on one day far in the future must be the same as it is on the next day. Thus $p_r=.5times p_r+.1times (1-p_r)implies p_r=frac 16$
– lulu
Nov 27 '18 at 20:14
add a comment |
Problem
State of the weather in city can be modeled with simple probability. After rainy day it will rain the next day with probability of $0.5$ and after sunny day it will be sunny next day with probability of $0.9$. Let vector $vec{x_n}$ be
$$ vec{x_n} = begin{bmatrix} text{probability of sunny weather at day $n$} \ text{probability of rainy day at day $n$} end{bmatrix} $$
Probability of rainy and sunny weather for $n+1$:th day can be solved with matrix equation
$$ x_{n+1} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix} x_n $$
We can assume that $vec{x_0}=begin{bmatrix}1 & 0end{bmatrix}^T$. What happens when $x_{infty}$ ? What are probabilities for random day when $nrightarrow infty$
Attempt to solve
First we compute eigenvalues and eigenvectors for our matrix. We can compute eigenvalues easily by utilizing two facts about eigenvalues. $1)$ sum of eigenvalues is same as trace. $2)$ product of eigenvalues is same as determinant. Let matrix $A$ be
$$ textbf{A} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix}$$
Then we can note the equation as
$$ x_{n+1}=textbf{A}x_n $$
Then we can solve eigenvalues.
$$ begin{cases}
lambda_1 + lambda_2 = text{Tr}(textbf{A}) \
lambda_1cdot lambda_2= det(textbf{A}) \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 0.9 + 0.5 \
lambda_1cdot lambda_2= 0.9cdot 0.5 - 0.5 cdot 0.5 \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 1.4 \
lambda_1cdot lambda_2= 0.4 \
end{cases} $$
$$ implies lambda_1 = 0.4,lambda_2 = 1 $$
Eigenvectors can be acquired by solving $vec{x}$ from equation $(textbf{A}-lambda I)vec{x}=vec{0}$
$$
begin{bmatrix} 0.9 - lambda & 0.5 \ 0.1 & 0.5 - lambda end{bmatrix} begin{bmatrix} x_1 \ x_2 end{bmatrix} = begin{bmatrix} 0 \ 0 end{bmatrix}
$$
Now we have eigenvectors
$$ lambda_1 text{ gives } vec{x_{lambda1}} = begin{bmatrix} 5 \ 1 end{bmatrix}, lambda_2 text{ gives } vec{x_{lambda2}} = begin{bmatrix} -1 \ 1 end{bmatrix} $$
Eigenvectors are linearly independent so we can solve
$$ w_1 vec{x_{lambda1}} + w_2 vec{x_{lambda2}} = vec{x_0} $$
$$ implies w_1 begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 begin{bmatrix} -1 \ 1 end{bmatrix} = begin{bmatrix} 1 \ 0 end{bmatrix} $$
$$ implies begin{bmatrix} 5 & -1 \ 1 & 1 end{bmatrix} begin{bmatrix} w_1 \ w_2 end{bmatrix} = begin{bmatrix} 1 \0 end{bmatrix} $$
$$ implies w_1=1/6, w_2=-1/6 $$
I can write the original equation as:
$$ x_{n+1}=textbf{A}^n vec{x_{0}} = w_1 cdot lambda_1^n cdot vec{x_{lambda1}}+w_2 cdot lambda_2^n cdot vec{x_{lambda2}}$$
$$ x_{n+1} = w_1 cdot 0.4^n cdot begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 cdot 1^n cdot begin{bmatrix} -1 \ 1 end{bmatrix} implies w_2 begin{bmatrix} -1 \ 1 end{bmatrix}, text{ when } k rightarrow infty $$
Then we have $P("text{sunny}")= -1w_1$ and $p(text{"it is raining"})=w_1$
$$ P("text{sunny}") = frac{1}{6} approx 16.67% $$
$$ P("text{raining}") = -frac{1}{6} approx -16.67% $$
Which is quite confusing that i have negative probability ? I think something went wrong with these calculations but i cannot see what ?
probability matrices eigenvalues-eigenvectors markov-chains
Problem
State of the weather in city can be modeled with simple probability. After rainy day it will rain the next day with probability of $0.5$ and after sunny day it will be sunny next day with probability of $0.9$. Let vector $vec{x_n}$ be
$$ vec{x_n} = begin{bmatrix} text{probability of sunny weather at day $n$} \ text{probability of rainy day at day $n$} end{bmatrix} $$
Probability of rainy and sunny weather for $n+1$:th day can be solved with matrix equation
$$ x_{n+1} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix} x_n $$
We can assume that $vec{x_0}=begin{bmatrix}1 & 0end{bmatrix}^T$. What happens when $x_{infty}$ ? What are probabilities for random day when $nrightarrow infty$
Attempt to solve
First we compute eigenvalues and eigenvectors for our matrix. We can compute eigenvalues easily by utilizing two facts about eigenvalues. $1)$ sum of eigenvalues is same as trace. $2)$ product of eigenvalues is same as determinant. Let matrix $A$ be
$$ textbf{A} = begin{bmatrix} 0.9 & 0.5 \ 0.1 & 0.5 end{bmatrix}$$
Then we can note the equation as
$$ x_{n+1}=textbf{A}x_n $$
Then we can solve eigenvalues.
$$ begin{cases}
lambda_1 + lambda_2 = text{Tr}(textbf{A}) \
lambda_1cdot lambda_2= det(textbf{A}) \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 0.9 + 0.5 \
lambda_1cdot lambda_2= 0.9cdot 0.5 - 0.5 cdot 0.5 \
end{cases} $$
$$ implies begin{cases}
lambda_1 + lambda_2 = 1.4 \
lambda_1cdot lambda_2= 0.4 \
end{cases} $$
$$ implies lambda_1 = 0.4,lambda_2 = 1 $$
Eigenvectors can be acquired by solving $vec{x}$ from equation $(textbf{A}-lambda I)vec{x}=vec{0}$
$$
begin{bmatrix} 0.9 - lambda & 0.5 \ 0.1 & 0.5 - lambda end{bmatrix} begin{bmatrix} x_1 \ x_2 end{bmatrix} = begin{bmatrix} 0 \ 0 end{bmatrix}
$$
Now we have eigenvectors
$$ lambda_1 text{ gives } vec{x_{lambda1}} = begin{bmatrix} 5 \ 1 end{bmatrix}, lambda_2 text{ gives } vec{x_{lambda2}} = begin{bmatrix} -1 \ 1 end{bmatrix} $$
Eigenvectors are linearly independent so we can solve
$$ w_1 vec{x_{lambda1}} + w_2 vec{x_{lambda2}} = vec{x_0} $$
$$ implies w_1 begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 begin{bmatrix} -1 \ 1 end{bmatrix} = begin{bmatrix} 1 \ 0 end{bmatrix} $$
$$ implies begin{bmatrix} 5 & -1 \ 1 & 1 end{bmatrix} begin{bmatrix} w_1 \ w_2 end{bmatrix} = begin{bmatrix} 1 \0 end{bmatrix} $$
$$ implies w_1=1/6, w_2=-1/6 $$
I can write the original equation as:
$$ x_{n+1}=textbf{A}^n vec{x_{0}} = w_1 cdot lambda_1^n cdot vec{x_{lambda1}}+w_2 cdot lambda_2^n cdot vec{x_{lambda2}}$$
$$ x_{n+1} = w_1 cdot 0.4^n cdot begin{bmatrix} 5 \ 1 end{bmatrix} + w_2 cdot 1^n cdot begin{bmatrix} -1 \ 1 end{bmatrix} implies w_2 begin{bmatrix} -1 \ 1 end{bmatrix}, text{ when } k rightarrow infty $$
Then we have $P("text{sunny}")= -1w_1$ and $p(text{"it is raining"})=w_1$
$$ P("text{sunny}") = frac{1}{6} approx 16.67% $$
$$ P("text{raining}") = -frac{1}{6} approx -16.67% $$
Which is quite confusing that i have negative probability ? I think something went wrong with these calculations but i cannot see what ?
probability matrices eigenvalues-eigenvectors markov-chains
probability matrices eigenvalues-eigenvectors markov-chains
asked Nov 27 '18 at 20:08
Tuki
1,019316
1,019316
2
A quick way to get the answer is to note that the probability that it is raining on one day far in the future must be the same as it is on the next day. Thus $p_r=.5times p_r+.1times (1-p_r)implies p_r=frac 16$
– lulu
Nov 27 '18 at 20:14
add a comment |
2
A quick way to get the answer is to note that the probability that it is raining on one day far in the future must be the same as it is on the next day. Thus $p_r=.5times p_r+.1times (1-p_r)implies p_r=frac 16$
– lulu
Nov 27 '18 at 20:14
2
2
A quick way to get the answer is to note that the probability that it is raining on one day far in the future must be the same as it is on the next day. Thus $p_r=.5times p_r+.1times (1-p_r)implies p_r=frac 16$
– lulu
Nov 27 '18 at 20:14
A quick way to get the answer is to note that the probability that it is raining on one day far in the future must be the same as it is on the next day. Thus $p_r=.5times p_r+.1times (1-p_r)implies p_r=frac 16$
– lulu
Nov 27 '18 at 20:14
add a comment |
1 Answer
1
active
oldest
votes
It's all good except for the fact that the eigenvalue $lambda_1=0.4$ yields as eigenvector $(-1,1)$ and eigenvalue $lambda_2=1$ the eigenvector $(5,1)$ (that is, the other way around).
Being so, at the end you would have that $$lim_{ntoinfty}w_2,lambda_2^n,vec{x}_{lambda_2} = w_2,(5,1)=(5/6, 1/6)$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016245%2fprobability-it-rains-on-random-day%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It's all good except for the fact that the eigenvalue $lambda_1=0.4$ yields as eigenvector $(-1,1)$ and eigenvalue $lambda_2=1$ the eigenvector $(5,1)$ (that is, the other way around).
Being so, at the end you would have that $$lim_{ntoinfty}w_2,lambda_2^n,vec{x}_{lambda_2} = w_2,(5,1)=(5/6, 1/6)$$
add a comment |
It's all good except for the fact that the eigenvalue $lambda_1=0.4$ yields as eigenvector $(-1,1)$ and eigenvalue $lambda_2=1$ the eigenvector $(5,1)$ (that is, the other way around).
Being so, at the end you would have that $$lim_{ntoinfty}w_2,lambda_2^n,vec{x}_{lambda_2} = w_2,(5,1)=(5/6, 1/6)$$
add a comment |
It's all good except for the fact that the eigenvalue $lambda_1=0.4$ yields as eigenvector $(-1,1)$ and eigenvalue $lambda_2=1$ the eigenvector $(5,1)$ (that is, the other way around).
Being so, at the end you would have that $$lim_{ntoinfty}w_2,lambda_2^n,vec{x}_{lambda_2} = w_2,(5,1)=(5/6, 1/6)$$
It's all good except for the fact that the eigenvalue $lambda_1=0.4$ yields as eigenvector $(-1,1)$ and eigenvalue $lambda_2=1$ the eigenvector $(5,1)$ (that is, the other way around).
Being so, at the end you would have that $$lim_{ntoinfty}w_2,lambda_2^n,vec{x}_{lambda_2} = w_2,(5,1)=(5/6, 1/6)$$
answered Nov 28 '18 at 3:10
DavidPM
26618
26618
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016245%2fprobability-it-rains-on-random-day%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
A quick way to get the answer is to note that the probability that it is raining on one day far in the future must be the same as it is on the next day. Thus $p_r=.5times p_r+.1times (1-p_r)implies p_r=frac 16$
– lulu
Nov 27 '18 at 20:14