Poisson Equation with Boundary Value Problem












0














I am trying to learn about solving boundary value problems, but I stuck when I came to finding BVP of $1$D Poisson equation on $[0,1]$:
$$
begin{cases}
dfrac{mathrm{d}^2}{mathrm{d}x^2}u(x)=-g(x) \
u(0)= a \
u(1)= b
end{cases}
$$

where $g(x)=−6pi cos(3pi x)+9pi^2x sin(3pi x)$ and $a=b=0$.



Should I get the integral of given $g$ two times and then plug in the $u(0)$ and $u(1)$ values to find out the values of the two integration constants $c_1$ and $c_2$? Or am I supposed to do something else? Also, how can I start solving it numerically by discretization for any $h$ value? Any hint or tip is appreciated.










share|cite|improve this question





























    0














    I am trying to learn about solving boundary value problems, but I stuck when I came to finding BVP of $1$D Poisson equation on $[0,1]$:
    $$
    begin{cases}
    dfrac{mathrm{d}^2}{mathrm{d}x^2}u(x)=-g(x) \
    u(0)= a \
    u(1)= b
    end{cases}
    $$

    where $g(x)=−6pi cos(3pi x)+9pi^2x sin(3pi x)$ and $a=b=0$.



    Should I get the integral of given $g$ two times and then plug in the $u(0)$ and $u(1)$ values to find out the values of the two integration constants $c_1$ and $c_2$? Or am I supposed to do something else? Also, how can I start solving it numerically by discretization for any $h$ value? Any hint or tip is appreciated.










    share|cite|improve this question



























      0












      0








      0


      0





      I am trying to learn about solving boundary value problems, but I stuck when I came to finding BVP of $1$D Poisson equation on $[0,1]$:
      $$
      begin{cases}
      dfrac{mathrm{d}^2}{mathrm{d}x^2}u(x)=-g(x) \
      u(0)= a \
      u(1)= b
      end{cases}
      $$

      where $g(x)=−6pi cos(3pi x)+9pi^2x sin(3pi x)$ and $a=b=0$.



      Should I get the integral of given $g$ two times and then plug in the $u(0)$ and $u(1)$ values to find out the values of the two integration constants $c_1$ and $c_2$? Or am I supposed to do something else? Also, how can I start solving it numerically by discretization for any $h$ value? Any hint or tip is appreciated.










      share|cite|improve this question















      I am trying to learn about solving boundary value problems, but I stuck when I came to finding BVP of $1$D Poisson equation on $[0,1]$:
      $$
      begin{cases}
      dfrac{mathrm{d}^2}{mathrm{d}x^2}u(x)=-g(x) \
      u(0)= a \
      u(1)= b
      end{cases}
      $$

      where $g(x)=−6pi cos(3pi x)+9pi^2x sin(3pi x)$ and $a=b=0$.



      Should I get the integral of given $g$ two times and then plug in the $u(0)$ and $u(1)$ values to find out the values of the two integration constants $c_1$ and $c_2$? Or am I supposed to do something else? Also, how can I start solving it numerically by discretization for any $h$ value? Any hint or tip is appreciated.







      differential-equations boundary-value-problem poissons-equation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 27 '18 at 20:13









      Dylan

      12.4k31026




      12.4k31026










      asked Oct 31 '18 at 20:34









      enes

      245




      245






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979625%2fpoisson-equation-with-boundary-value-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979625%2fpoisson-equation-with-boundary-value-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei