An simple intermediate step of the proof that $partial^2 = 0$ in the case of singular homology
$begingroup$
Let $Delta_q$ be the standard $q$-simplex. The function $F_q^s : Delta_{q-1} to Delta_q$ is the $s$-th face of $Delta_q$, defined as the correstriction to $Delta_q$ of $(e_0,dots,e_{s-1},hat{e_s},e_{s+1},dots,e_q)$, the map $Delta_{q-1} to mathbb{R}^q$ that sends $e_i$ to itself for $i < s$ and $e_i$ to $e_{i+1}$ if $i geq s$.
I'm stuck on trying to prove the following elementary result,
Lemma. Let $0 leq j < i leq q$. Then $F_q^{i}F_{q-1}^{j} = F_q^{j}F_{q-1}^{i-1}$.
I apologize for the simplicity of the question, but I cannot seem to pinpoint where am I making the mistake, so any help is greatly appreciated.
By a direct calculation,
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq j, l geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq i$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l < j$}\
e_{l+2} text{ if $l geq i-1, l geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
These don't seem to coincide. Where have I gone wrong?
algebraic-topology proof-explanation
$endgroup$
add a comment |
$begingroup$
Let $Delta_q$ be the standard $q$-simplex. The function $F_q^s : Delta_{q-1} to Delta_q$ is the $s$-th face of $Delta_q$, defined as the correstriction to $Delta_q$ of $(e_0,dots,e_{s-1},hat{e_s},e_{s+1},dots,e_q)$, the map $Delta_{q-1} to mathbb{R}^q$ that sends $e_i$ to itself for $i < s$ and $e_i$ to $e_{i+1}$ if $i geq s$.
I'm stuck on trying to prove the following elementary result,
Lemma. Let $0 leq j < i leq q$. Then $F_q^{i}F_{q-1}^{j} = F_q^{j}F_{q-1}^{i-1}$.
I apologize for the simplicity of the question, but I cannot seem to pinpoint where am I making the mistake, so any help is greatly appreciated.
By a direct calculation,
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq j, l geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq i$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l < j$}\
e_{l+2} text{ if $l geq i-1, l geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
These don't seem to coincide. Where have I gone wrong?
algebraic-topology proof-explanation
$endgroup$
1
$begingroup$
Many homology theories are described by a collection of maps called face and degeneracy maps, satisfying a set of axioms called simplicial identities (you may read more about them at the nLab). The ones you posted are precisely the ones which guarantee that their alternating sum is a differential.
$endgroup$
– F M
Dec 17 '18 at 15:58
add a comment |
$begingroup$
Let $Delta_q$ be the standard $q$-simplex. The function $F_q^s : Delta_{q-1} to Delta_q$ is the $s$-th face of $Delta_q$, defined as the correstriction to $Delta_q$ of $(e_0,dots,e_{s-1},hat{e_s},e_{s+1},dots,e_q)$, the map $Delta_{q-1} to mathbb{R}^q$ that sends $e_i$ to itself for $i < s$ and $e_i$ to $e_{i+1}$ if $i geq s$.
I'm stuck on trying to prove the following elementary result,
Lemma. Let $0 leq j < i leq q$. Then $F_q^{i}F_{q-1}^{j} = F_q^{j}F_{q-1}^{i-1}$.
I apologize for the simplicity of the question, but I cannot seem to pinpoint where am I making the mistake, so any help is greatly appreciated.
By a direct calculation,
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq j, l geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq i$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l < j$}\
e_{l+2} text{ if $l geq i-1, l geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
These don't seem to coincide. Where have I gone wrong?
algebraic-topology proof-explanation
$endgroup$
Let $Delta_q$ be the standard $q$-simplex. The function $F_q^s : Delta_{q-1} to Delta_q$ is the $s$-th face of $Delta_q$, defined as the correstriction to $Delta_q$ of $(e_0,dots,e_{s-1},hat{e_s},e_{s+1},dots,e_q)$, the map $Delta_{q-1} to mathbb{R}^q$ that sends $e_i$ to itself for $i < s$ and $e_i$ to $e_{i+1}$ if $i geq s$.
I'm stuck on trying to prove the following elementary result,
Lemma. Let $0 leq j < i leq q$. Then $F_q^{i}F_{q-1}^{j} = F_q^{j}F_{q-1}^{i-1}$.
I apologize for the simplicity of the question, but I cannot seem to pinpoint where am I making the mistake, so any help is greatly appreciated.
By a direct calculation,
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq j, l geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i$}\
e_{l+2} text{ if $l geq i$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l < j$}\
e_{l+2} text{ if $l geq i-1, l geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
These don't seem to coincide. Where have I gone wrong?
algebraic-topology proof-explanation
algebraic-topology proof-explanation
edited Dec 16 '18 at 6:39
Guido A.
asked Dec 16 '18 at 6:33
Guido A.Guido A.
7,3601730
7,3601730
1
$begingroup$
Many homology theories are described by a collection of maps called face and degeneracy maps, satisfying a set of axioms called simplicial identities (you may read more about them at the nLab). The ones you posted are precisely the ones which guarantee that their alternating sum is a differential.
$endgroup$
– F M
Dec 17 '18 at 15:58
add a comment |
1
$begingroup$
Many homology theories are described by a collection of maps called face and degeneracy maps, satisfying a set of axioms called simplicial identities (you may read more about them at the nLab). The ones you posted are precisely the ones which guarantee that their alternating sum is a differential.
$endgroup$
– F M
Dec 17 '18 at 15:58
1
1
$begingroup$
Many homology theories are described by a collection of maps called face and degeneracy maps, satisfying a set of axioms called simplicial identities (you may read more about them at the nLab). The ones you posted are precisely the ones which guarantee that their alternating sum is a differential.
$endgroup$
– F M
Dec 17 '18 at 15:58
$begingroup$
Many homology theories are described by a collection of maps called face and degeneracy maps, satisfying a set of axioms called simplicial identities (you may read more about them at the nLab). The ones you posted are precisely the ones which guarantee that their alternating sum is a differential.
$endgroup$
– F M
Dec 17 '18 at 15:58
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You did not correctly calculate $F^s_q(e_{l+1})$. You have
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l+1 < i$}\
e_{l+2} text{ if $l geq j, l+1 geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i-1$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l+1< j$}\
e_{l+2} text{ if $l geq i-1, l+1 geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
$endgroup$
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042306%2fan-simple-intermediate-step-of-the-proof-that-partial2-0-in-the-case-of-si%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You did not correctly calculate $F^s_q(e_{l+1})$. You have
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l+1 < i$}\
e_{l+2} text{ if $l geq j, l+1 geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i-1$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l+1< j$}\
e_{l+2} text{ if $l geq i-1, l+1 geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
$endgroup$
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
add a comment |
$begingroup$
You did not correctly calculate $F^s_q(e_{l+1})$. You have
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l+1 < i$}\
e_{l+2} text{ if $l geq j, l+1 geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i-1$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l+1< j$}\
e_{l+2} text{ if $l geq i-1, l+1 geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
$endgroup$
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
add a comment |
$begingroup$
You did not correctly calculate $F^s_q(e_{l+1})$. You have
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l+1 < i$}\
e_{l+2} text{ if $l geq j, l+1 geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i-1$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l+1< j$}\
e_{l+2} text{ if $l geq i-1, l+1 geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
$endgroup$
You did not correctly calculate $F^s_q(e_{l+1})$. You have
$$
begin{align}
F_q^{i}F_{q-1}^{j}(e_l) &= cases{F_q^{i}(e_l) text{ if $l < j$}\ F_q^{i}(e_{l+1}) text{ if $l geq j$}} \&=
cases{
e_l quad text{ if $l < j, l< i$}\
e_{l+1} text{ if $l < j, l geq i$}\
e_{l+1} text{ if $l geq j, l+1 < i$}\
e_{l+2} text{ if $l geq j, l+1 geq i$}} \&=
cases{
e_l quad text{ if $l < j$}\
e_{l+1} text{ if $l geq j, l < i-1$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
and
$$
begin{align}
F_q^{j}F_{q-1}^{i-1}(e_l) &= cases{F_q^{j}(e_l) text{ if $l < i-1$}\ F_q^{j}(e_{l+1}) text{ if $l geq i-1$}} \ &=
cases{
e_l quad text{ if $l < i-1, l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+1} text{ if $l geq i-1, l+1< j$}\
e_{l+2} text{ if $l geq i-1, l+1 geq j$}} \ &=
cases{
e_l quad text{ if $l< j$}\
e_{l+1} text{ if $l < i-1, l geq j$}\
e_{l+2} text{ if $l geq i-1$}}
end{align}
$$
edited Dec 16 '18 at 9:45
answered Dec 16 '18 at 9:38
Paul FrostPaul Frost
10.6k3933
10.6k3933
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
add a comment |
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
$begingroup$
I see it now! I had rewritten this many times, but it seems that I had fixed my mistake already. Thanks a lot!
$endgroup$
– Guido A.
Dec 17 '18 at 1:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042306%2fan-simple-intermediate-step-of-the-proof-that-partial2-0-in-the-case-of-si%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Many homology theories are described by a collection of maps called face and degeneracy maps, satisfying a set of axioms called simplicial identities (you may read more about them at the nLab). The ones you posted are precisely the ones which guarantee that their alternating sum is a differential.
$endgroup$
– F M
Dec 17 '18 at 15:58