Showing any linear operator $T : X to Y$ is bounded, where $X$ is a finite dimensional normed vector space,...












4












$begingroup$


Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.



I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.



Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.



Can please someone help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: What theorem do you know about norms on a finite-dimensional vector space?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:02










  • $begingroup$
    Norms on a finite-dimensional vector space are equivalent?
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:14










  • $begingroup$
    Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:16










  • $begingroup$
    $∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:25






  • 1




    $begingroup$
    I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:41
















4












$begingroup$


Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.



I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.



Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.



Can please someone help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: What theorem do you know about norms on a finite-dimensional vector space?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:02










  • $begingroup$
    Norms on a finite-dimensional vector space are equivalent?
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:14










  • $begingroup$
    Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:16










  • $begingroup$
    $∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:25






  • 1




    $begingroup$
    I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:41














4












4








4





$begingroup$


Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.



I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.



Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.



Can please someone help?










share|cite|improve this question











$endgroup$




Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.



I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.



Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.



Can please someone help?







functional-analysis vector-spaces normed-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 12:17









amWhy

1




1










asked Dec 16 '18 at 10:45









Anna SchmitzAnna Schmitz

917




917












  • $begingroup$
    Hint: What theorem do you know about norms on a finite-dimensional vector space?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:02










  • $begingroup$
    Norms on a finite-dimensional vector space are equivalent?
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:14










  • $begingroup$
    Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:16










  • $begingroup$
    $∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:25






  • 1




    $begingroup$
    I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:41


















  • $begingroup$
    Hint: What theorem do you know about norms on a finite-dimensional vector space?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:02










  • $begingroup$
    Norms on a finite-dimensional vector space are equivalent?
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:14










  • $begingroup$
    Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:16










  • $begingroup$
    $∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 11:25






  • 1




    $begingroup$
    I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
    $endgroup$
    – Mindlack
    Dec 16 '18 at 11:41
















$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02




$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02












$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14




$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14












$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16




$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16












$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25




$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25




1




1




$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41




$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41










1 Answer
1






active

oldest

votes


















1












$begingroup$

Regarding the operator norm:
I was thinking



$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Seems correct !
    $endgroup$
    – Viktor Glombik
    Dec 16 '18 at 12:18










  • $begingroup$
    Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
    $endgroup$
    – user289143
    Dec 16 '18 at 16:37










  • $begingroup$
    Because $Y := ell_1(mathbb{N})$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:39










  • $begingroup$
    But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
    $endgroup$
    – user289143
    Dec 16 '18 at 16:42






  • 1




    $begingroup$
    True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:50













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042463%2fshowing-any-linear-operator-t-x-to-y-is-bounded-where-x-is-a-finite-dime%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Regarding the operator norm:
I was thinking



$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Seems correct !
    $endgroup$
    – Viktor Glombik
    Dec 16 '18 at 12:18










  • $begingroup$
    Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
    $endgroup$
    – user289143
    Dec 16 '18 at 16:37










  • $begingroup$
    Because $Y := ell_1(mathbb{N})$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:39










  • $begingroup$
    But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
    $endgroup$
    – user289143
    Dec 16 '18 at 16:42






  • 1




    $begingroup$
    True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:50


















1












$begingroup$

Regarding the operator norm:
I was thinking



$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Seems correct !
    $endgroup$
    – Viktor Glombik
    Dec 16 '18 at 12:18










  • $begingroup$
    Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
    $endgroup$
    – user289143
    Dec 16 '18 at 16:37










  • $begingroup$
    Because $Y := ell_1(mathbb{N})$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:39










  • $begingroup$
    But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
    $endgroup$
    – user289143
    Dec 16 '18 at 16:42






  • 1




    $begingroup$
    True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:50
















1












1








1





$begingroup$

Regarding the operator norm:
I was thinking



$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $






share|cite|improve this answer









$endgroup$



Regarding the operator norm:
I was thinking



$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 16 '18 at 11:57









Anna SchmitzAnna Schmitz

917




917








  • 1




    $begingroup$
    Seems correct !
    $endgroup$
    – Viktor Glombik
    Dec 16 '18 at 12:18










  • $begingroup$
    Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
    $endgroup$
    – user289143
    Dec 16 '18 at 16:37










  • $begingroup$
    Because $Y := ell_1(mathbb{N})$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:39










  • $begingroup$
    But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
    $endgroup$
    – user289143
    Dec 16 '18 at 16:42






  • 1




    $begingroup$
    True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:50
















  • 1




    $begingroup$
    Seems correct !
    $endgroup$
    – Viktor Glombik
    Dec 16 '18 at 12:18










  • $begingroup$
    Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
    $endgroup$
    – user289143
    Dec 16 '18 at 16:37










  • $begingroup$
    Because $Y := ell_1(mathbb{N})$
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:39










  • $begingroup$
    But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
    $endgroup$
    – user289143
    Dec 16 '18 at 16:42






  • 1




    $begingroup$
    True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
    $endgroup$
    – Anna Schmitz
    Dec 16 '18 at 16:50










1




1




$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18




$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18












$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37




$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37












$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39




$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39












$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42




$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42




1




1




$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50






$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042463%2fshowing-any-linear-operator-t-x-to-y-is-bounded-where-x-is-a-finite-dime%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei