Check the correct sign $pm$ in $( Ve^{-j(wt+A)})/(Ie^{-j(wt+B)})=(V/I)cdot[cos(A-B) pm jsin(A-B)]$












-1












$begingroup$



If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$




I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$










share|cite|improve this question











$endgroup$












  • $begingroup$
    If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
    $endgroup$
    – Shubham Johri
    Dec 16 '18 at 10:30
















-1












$begingroup$



If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$




I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$










share|cite|improve this question











$endgroup$












  • $begingroup$
    If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
    $endgroup$
    – Shubham Johri
    Dec 16 '18 at 10:30














-1












-1








-1





$begingroup$



If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$




I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$










share|cite|improve this question











$endgroup$





If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$




I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$







proof-verification complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 11:22









Did

248k23223460




248k23223460










asked Dec 16 '18 at 10:12









Mvb1Mvb1

1




1












  • $begingroup$
    If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
    $endgroup$
    – Shubham Johri
    Dec 16 '18 at 10:30


















  • $begingroup$
    If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
    $endgroup$
    – Shubham Johri
    Dec 16 '18 at 10:30
















$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30




$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30










1 Answer
1






active

oldest

votes


















0












$begingroup$

Well,



$$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
by Euler's formula, then because cosine is even and sine is odd,
$$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$



You got it






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042437%2fcheck-the-correct-sign-pm-in-ve-jwta-ie-jwtb-v-i-cdot-co%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Well,



    $$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
    by Euler's formula, then because cosine is even and sine is odd,
    $$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$



    You got it






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Well,



      $$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
      by Euler's formula, then because cosine is even and sine is odd,
      $$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$



      You got it






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Well,



        $$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
        by Euler's formula, then because cosine is even and sine is odd,
        $$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$



        You got it






        share|cite|improve this answer









        $endgroup$



        Well,



        $$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
        by Euler's formula, then because cosine is even and sine is odd,
        $$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$



        You got it







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 16 '18 at 10:37









        kevinkayakskevinkayaks

        1558




        1558






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042437%2fcheck-the-correct-sign-pm-in-ve-jwta-ie-jwtb-v-i-cdot-co%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei