Check the correct sign $pm$ in $( Ve^{-j(wt+A)})/(Ie^{-j(wt+B)})=(V/I)cdot[cos(A-B) pm jsin(A-B)]$
$begingroup$
If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$
I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$
proof-verification complex-numbers
$endgroup$
add a comment |
$begingroup$
If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$
I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$
proof-verification complex-numbers
$endgroup$
$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30
add a comment |
$begingroup$
If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$
I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$
proof-verification complex-numbers
$endgroup$
If $v = Ve^{-j(wt+A)}, i= Ie^{-j(wt+B)}$ then show that the impedance $z = v/i$ is given by $$Z = (V/I)cdot[cos(A-B) + jsin(A-B)]$$
I get confused because when I used the correct rules, it always comes to $$(V/I)cdot[cos(A-B) - jsin(A-B)]$$ instead because of the rule that $e^{-j(theta)}=cos(theta) - sin(theta)$
proof-verification complex-numbers
proof-verification complex-numbers
edited Dec 16 '18 at 11:22
Did
248k23223460
248k23223460
asked Dec 16 '18 at 10:12
Mvb1Mvb1
1
1
$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30
add a comment |
$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30
$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30
$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well,
$$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
by Euler's formula, then because cosine is even and sine is odd,
$$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$
You got it
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042437%2fcheck-the-correct-sign-pm-in-ve-jwta-ie-jwtb-v-i-cdot-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well,
$$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
by Euler's formula, then because cosine is even and sine is odd,
$$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$
You got it
$endgroup$
add a comment |
$begingroup$
Well,
$$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
by Euler's formula, then because cosine is even and sine is odd,
$$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$
You got it
$endgroup$
add a comment |
$begingroup$
Well,
$$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
by Euler's formula, then because cosine is even and sine is odd,
$$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$
You got it
$endgroup$
Well,
$$ frac{v}{i} = frac{V}{I}e^{-j(A-B)} = frac{V}{I} [cos(-(A-B))+jsin(-(A-B))]$$
by Euler's formula, then because cosine is even and sine is odd,
$$ frac{v}{i} = frac{V}{I} [cos(A-B) -j sin(A-B)].$$
You got it
answered Dec 16 '18 at 10:37
kevinkayakskevinkayaks
1558
1558
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042437%2fcheck-the-correct-sign-pm-in-ve-jwta-ie-jwtb-v-i-cdot-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If $j=sqrt{-1}$, your answer is correct (although you might want to check the rule $e^{-j(theta)}=cos(theta) - sin(theta)$ again)
$endgroup$
– Shubham Johri
Dec 16 '18 at 10:30