Conditions for the differentiation of Fourier Transform of a function.
$begingroup$
Suppose $varphi(t)$ is smooth on $mathbb{R}$ and $f(x)=displaystyle int_{-infty}^{infty} varphi(t) e^{-2pi ixt}dt$ is the Fourier Transform of $varphi(t)$. Then Inverse Fourier Transform is given by:
begin{equation}
varphi(t)=displaystyle int_{-infty}^{infty} f(x) e^{-2pi ixt}dx
end{equation}
My question is what should be the conditions on $f(x)$ so that I can differentiate $varphi(t)$?
Can I differentiate to get:
begin{equation*}
varphi'(t)=(-2pi i)displaystyle int_{-infty}^{infty} xf(x) e^{-2pi ixt}dx
end{equation*}
real-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Suppose $varphi(t)$ is smooth on $mathbb{R}$ and $f(x)=displaystyle int_{-infty}^{infty} varphi(t) e^{-2pi ixt}dt$ is the Fourier Transform of $varphi(t)$. Then Inverse Fourier Transform is given by:
begin{equation}
varphi(t)=displaystyle int_{-infty}^{infty} f(x) e^{-2pi ixt}dx
end{equation}
My question is what should be the conditions on $f(x)$ so that I can differentiate $varphi(t)$?
Can I differentiate to get:
begin{equation*}
varphi'(t)=(-2pi i)displaystyle int_{-infty}^{infty} xf(x) e^{-2pi ixt}dx
end{equation*}
real-analysis fourier-transform
$endgroup$
1
$begingroup$
Integrability of $xf(x)$ is a sufficient condition.
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:55
$begingroup$
@KaviRamaMurthy If I have to differentiate again then integrability of $x^2f(x)$ would be sufficient and son, right? What would be the good reference related to it?
$endgroup$
– ersh
Dec 19 '18 at 0:04
2
$begingroup$
You are right and you get these by an application of DCT.
$endgroup$
– Kavi Rama Murthy
Dec 19 '18 at 0:07
1
$begingroup$
The sufficient condition is that $lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ converges uniformly for $t in U$, so that $int_b^c lim_{A,B to infty} int_{-A}^B (-2i pi x) f(x) e^{-2i pi xt}dxdt=lim_{A,B to infty} int_{-A}^B f(x) (int_b^c (-2i pi x) e^{-2i pi xt}dt)dx$ $=lim_{A,B to infty} int_{-A}^B f(x) ( e^{-2i pi cx}- e^{-2i pi bx})dx=varphi(c)-varphi(b)$ which implies that $varphi'(c) = lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ which is then continuous
$endgroup$
– reuns
Dec 19 '18 at 8:12
add a comment |
$begingroup$
Suppose $varphi(t)$ is smooth on $mathbb{R}$ and $f(x)=displaystyle int_{-infty}^{infty} varphi(t) e^{-2pi ixt}dt$ is the Fourier Transform of $varphi(t)$. Then Inverse Fourier Transform is given by:
begin{equation}
varphi(t)=displaystyle int_{-infty}^{infty} f(x) e^{-2pi ixt}dx
end{equation}
My question is what should be the conditions on $f(x)$ so that I can differentiate $varphi(t)$?
Can I differentiate to get:
begin{equation*}
varphi'(t)=(-2pi i)displaystyle int_{-infty}^{infty} xf(x) e^{-2pi ixt}dx
end{equation*}
real-analysis fourier-transform
$endgroup$
Suppose $varphi(t)$ is smooth on $mathbb{R}$ and $f(x)=displaystyle int_{-infty}^{infty} varphi(t) e^{-2pi ixt}dt$ is the Fourier Transform of $varphi(t)$. Then Inverse Fourier Transform is given by:
begin{equation}
varphi(t)=displaystyle int_{-infty}^{infty} f(x) e^{-2pi ixt}dx
end{equation}
My question is what should be the conditions on $f(x)$ so that I can differentiate $varphi(t)$?
Can I differentiate to get:
begin{equation*}
varphi'(t)=(-2pi i)displaystyle int_{-infty}^{infty} xf(x) e^{-2pi ixt}dx
end{equation*}
real-analysis fourier-transform
real-analysis fourier-transform
edited Dec 19 '18 at 0:01
ersh
asked Dec 18 '18 at 23:48
ershersh
389113
389113
1
$begingroup$
Integrability of $xf(x)$ is a sufficient condition.
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:55
$begingroup$
@KaviRamaMurthy If I have to differentiate again then integrability of $x^2f(x)$ would be sufficient and son, right? What would be the good reference related to it?
$endgroup$
– ersh
Dec 19 '18 at 0:04
2
$begingroup$
You are right and you get these by an application of DCT.
$endgroup$
– Kavi Rama Murthy
Dec 19 '18 at 0:07
1
$begingroup$
The sufficient condition is that $lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ converges uniformly for $t in U$, so that $int_b^c lim_{A,B to infty} int_{-A}^B (-2i pi x) f(x) e^{-2i pi xt}dxdt=lim_{A,B to infty} int_{-A}^B f(x) (int_b^c (-2i pi x) e^{-2i pi xt}dt)dx$ $=lim_{A,B to infty} int_{-A}^B f(x) ( e^{-2i pi cx}- e^{-2i pi bx})dx=varphi(c)-varphi(b)$ which implies that $varphi'(c) = lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ which is then continuous
$endgroup$
– reuns
Dec 19 '18 at 8:12
add a comment |
1
$begingroup$
Integrability of $xf(x)$ is a sufficient condition.
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:55
$begingroup$
@KaviRamaMurthy If I have to differentiate again then integrability of $x^2f(x)$ would be sufficient and son, right? What would be the good reference related to it?
$endgroup$
– ersh
Dec 19 '18 at 0:04
2
$begingroup$
You are right and you get these by an application of DCT.
$endgroup$
– Kavi Rama Murthy
Dec 19 '18 at 0:07
1
$begingroup$
The sufficient condition is that $lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ converges uniformly for $t in U$, so that $int_b^c lim_{A,B to infty} int_{-A}^B (-2i pi x) f(x) e^{-2i pi xt}dxdt=lim_{A,B to infty} int_{-A}^B f(x) (int_b^c (-2i pi x) e^{-2i pi xt}dt)dx$ $=lim_{A,B to infty} int_{-A}^B f(x) ( e^{-2i pi cx}- e^{-2i pi bx})dx=varphi(c)-varphi(b)$ which implies that $varphi'(c) = lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ which is then continuous
$endgroup$
– reuns
Dec 19 '18 at 8:12
1
1
$begingroup$
Integrability of $xf(x)$ is a sufficient condition.
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:55
$begingroup$
Integrability of $xf(x)$ is a sufficient condition.
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:55
$begingroup$
@KaviRamaMurthy If I have to differentiate again then integrability of $x^2f(x)$ would be sufficient and son, right? What would be the good reference related to it?
$endgroup$
– ersh
Dec 19 '18 at 0:04
$begingroup$
@KaviRamaMurthy If I have to differentiate again then integrability of $x^2f(x)$ would be sufficient and son, right? What would be the good reference related to it?
$endgroup$
– ersh
Dec 19 '18 at 0:04
2
2
$begingroup$
You are right and you get these by an application of DCT.
$endgroup$
– Kavi Rama Murthy
Dec 19 '18 at 0:07
$begingroup$
You are right and you get these by an application of DCT.
$endgroup$
– Kavi Rama Murthy
Dec 19 '18 at 0:07
1
1
$begingroup$
The sufficient condition is that $lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ converges uniformly for $t in U$, so that $int_b^c lim_{A,B to infty} int_{-A}^B (-2i pi x) f(x) e^{-2i pi xt}dxdt=lim_{A,B to infty} int_{-A}^B f(x) (int_b^c (-2i pi x) e^{-2i pi xt}dt)dx$ $=lim_{A,B to infty} int_{-A}^B f(x) ( e^{-2i pi cx}- e^{-2i pi bx})dx=varphi(c)-varphi(b)$ which implies that $varphi'(c) = lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ which is then continuous
$endgroup$
– reuns
Dec 19 '18 at 8:12
$begingroup$
The sufficient condition is that $lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ converges uniformly for $t in U$, so that $int_b^c lim_{A,B to infty} int_{-A}^B (-2i pi x) f(x) e^{-2i pi xt}dxdt=lim_{A,B to infty} int_{-A}^B f(x) (int_b^c (-2i pi x) e^{-2i pi xt}dt)dx$ $=lim_{A,B to infty} int_{-A}^B f(x) ( e^{-2i pi cx}- e^{-2i pi bx})dx=varphi(c)-varphi(b)$ which implies that $varphi'(c) = lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ which is then continuous
$endgroup$
– reuns
Dec 19 '18 at 8:12
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This is a fundamental theorem in the Lebesgue Theory of Integration :
Let ${displaystyle X}$ be an open subset of ${displaystyle mathbf {R} }$, and ${displaystyle Omega }$ be a measure space. Suppose ${displaystyle fcolon Xtimes Omega rightarrow mathbf {R} }$ satisfies the following conditions:
${displaystyle f(x,omega )}$ is a Lebesgue-integrable function of ${displaystyle omega }$ for each ${displaystyle xin X}$.
For almost all ${displaystyle omega in Omega }$, the derivative ${displaystyle f_{x}}$ exists for all ${displaystyle xin X}$.
There is an integrable function ${displaystyle theta colon Omega rightarrow mathbf {R} }$ such that ${displaystyle |f_{x}(x,omega )|leq theta (omega )}$ for all ${displaystyle xin X}$ and almost every ${displaystyle omega in Omega }$.
Then by the Dominated convergence theorem for all ${displaystyle xin X}$,
${displaystyle {frac {d}{dx}}int _{Omega }f(x,omega ),domega =int _{Omega }f_{x}(x,omega ),domega .}$
$endgroup$
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
1
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045851%2fconditions-for-the-differentiation-of-fourier-transform-of-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is a fundamental theorem in the Lebesgue Theory of Integration :
Let ${displaystyle X}$ be an open subset of ${displaystyle mathbf {R} }$, and ${displaystyle Omega }$ be a measure space. Suppose ${displaystyle fcolon Xtimes Omega rightarrow mathbf {R} }$ satisfies the following conditions:
${displaystyle f(x,omega )}$ is a Lebesgue-integrable function of ${displaystyle omega }$ for each ${displaystyle xin X}$.
For almost all ${displaystyle omega in Omega }$, the derivative ${displaystyle f_{x}}$ exists for all ${displaystyle xin X}$.
There is an integrable function ${displaystyle theta colon Omega rightarrow mathbf {R} }$ such that ${displaystyle |f_{x}(x,omega )|leq theta (omega )}$ for all ${displaystyle xin X}$ and almost every ${displaystyle omega in Omega }$.
Then by the Dominated convergence theorem for all ${displaystyle xin X}$,
${displaystyle {frac {d}{dx}}int _{Omega }f(x,omega ),domega =int _{Omega }f_{x}(x,omega ),domega .}$
$endgroup$
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
1
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
add a comment |
$begingroup$
This is a fundamental theorem in the Lebesgue Theory of Integration :
Let ${displaystyle X}$ be an open subset of ${displaystyle mathbf {R} }$, and ${displaystyle Omega }$ be a measure space. Suppose ${displaystyle fcolon Xtimes Omega rightarrow mathbf {R} }$ satisfies the following conditions:
${displaystyle f(x,omega )}$ is a Lebesgue-integrable function of ${displaystyle omega }$ for each ${displaystyle xin X}$.
For almost all ${displaystyle omega in Omega }$, the derivative ${displaystyle f_{x}}$ exists for all ${displaystyle xin X}$.
There is an integrable function ${displaystyle theta colon Omega rightarrow mathbf {R} }$ such that ${displaystyle |f_{x}(x,omega )|leq theta (omega )}$ for all ${displaystyle xin X}$ and almost every ${displaystyle omega in Omega }$.
Then by the Dominated convergence theorem for all ${displaystyle xin X}$,
${displaystyle {frac {d}{dx}}int _{Omega }f(x,omega ),domega =int _{Omega }f_{x}(x,omega ),domega .}$
$endgroup$
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
1
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
add a comment |
$begingroup$
This is a fundamental theorem in the Lebesgue Theory of Integration :
Let ${displaystyle X}$ be an open subset of ${displaystyle mathbf {R} }$, and ${displaystyle Omega }$ be a measure space. Suppose ${displaystyle fcolon Xtimes Omega rightarrow mathbf {R} }$ satisfies the following conditions:
${displaystyle f(x,omega )}$ is a Lebesgue-integrable function of ${displaystyle omega }$ for each ${displaystyle xin X}$.
For almost all ${displaystyle omega in Omega }$, the derivative ${displaystyle f_{x}}$ exists for all ${displaystyle xin X}$.
There is an integrable function ${displaystyle theta colon Omega rightarrow mathbf {R} }$ such that ${displaystyle |f_{x}(x,omega )|leq theta (omega )}$ for all ${displaystyle xin X}$ and almost every ${displaystyle omega in Omega }$.
Then by the Dominated convergence theorem for all ${displaystyle xin X}$,
${displaystyle {frac {d}{dx}}int _{Omega }f(x,omega ),domega =int _{Omega }f_{x}(x,omega ),domega .}$
$endgroup$
This is a fundamental theorem in the Lebesgue Theory of Integration :
Let ${displaystyle X}$ be an open subset of ${displaystyle mathbf {R} }$, and ${displaystyle Omega }$ be a measure space. Suppose ${displaystyle fcolon Xtimes Omega rightarrow mathbf {R} }$ satisfies the following conditions:
${displaystyle f(x,omega )}$ is a Lebesgue-integrable function of ${displaystyle omega }$ for each ${displaystyle xin X}$.
For almost all ${displaystyle omega in Omega }$, the derivative ${displaystyle f_{x}}$ exists for all ${displaystyle xin X}$.
There is an integrable function ${displaystyle theta colon Omega rightarrow mathbf {R} }$ such that ${displaystyle |f_{x}(x,omega )|leq theta (omega )}$ for all ${displaystyle xin X}$ and almost every ${displaystyle omega in Omega }$.
Then by the Dominated convergence theorem for all ${displaystyle xin X}$,
${displaystyle {frac {d}{dx}}int _{Omega }f(x,omega ),domega =int _{Omega }f_{x}(x,omega ),domega .}$
answered Dec 19 '18 at 0:11
MalikMalik
1018
1018
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
1
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
add a comment |
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
1
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
$begingroup$
Can you please provide me reference to this result?
$endgroup$
– ersh
Dec 19 '18 at 1:41
1
1
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
$begingroup$
Any measure theory book like Follan : Real analysis and modern techniques, or simply visit wikipedia : en.wikipedia.org/wiki/Leibniz_integral_rule, by scrolling down you'll see the measure theoretic statement
$endgroup$
– Malik
Dec 19 '18 at 2:28
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045851%2fconditions-for-the-differentiation-of-fourier-transform-of-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Integrability of $xf(x)$ is a sufficient condition.
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:55
$begingroup$
@KaviRamaMurthy If I have to differentiate again then integrability of $x^2f(x)$ would be sufficient and son, right? What would be the good reference related to it?
$endgroup$
– ersh
Dec 19 '18 at 0:04
2
$begingroup$
You are right and you get these by an application of DCT.
$endgroup$
– Kavi Rama Murthy
Dec 19 '18 at 0:07
1
$begingroup$
The sufficient condition is that $lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ converges uniformly for $t in U$, so that $int_b^c lim_{A,B to infty} int_{-A}^B (-2i pi x) f(x) e^{-2i pi xt}dxdt=lim_{A,B to infty} int_{-A}^B f(x) (int_b^c (-2i pi x) e^{-2i pi xt}dt)dx$ $=lim_{A,B to infty} int_{-A}^B f(x) ( e^{-2i pi cx}- e^{-2i pi bx})dx=varphi(c)-varphi(b)$ which implies that $varphi'(c) = lim_{A,B to infty} int_{-A}^B x f(x) e^{-2i pi xt}dx$ which is then continuous
$endgroup$
– reuns
Dec 19 '18 at 8:12