Is there a closed formula for $sum_{k=0}^n binom{alpha}{n-k} binom{beta}{k}(-1)^k$?
$begingroup$
Suppose $alpha, beta, n$ are three non-negative integers with $nleq min(alpha, beta)$. Is there a closed formula (or a combinatorical concept) for
$$
C_n^{(alpha, beta)}:=sum_{k=0}^n binom{n}{k} (-1)^k (alpha)_{n-k}(beta)_{k}=n!
sum_{k=0}^n binom{alpha}{n-k} binom{beta}{k}(-1)^k
$$
here $(x)_k=x(x-1)cdots(x-k+1)$ is the falling factorial. If that $(-1)^k$ was not there then the formula would've been $(alpha+beta)_n$. Also, is there a combinatorical intepretation of this number?
combinatorics binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Suppose $alpha, beta, n$ are three non-negative integers with $nleq min(alpha, beta)$. Is there a closed formula (or a combinatorical concept) for
$$
C_n^{(alpha, beta)}:=sum_{k=0}^n binom{n}{k} (-1)^k (alpha)_{n-k}(beta)_{k}=n!
sum_{k=0}^n binom{alpha}{n-k} binom{beta}{k}(-1)^k
$$
here $(x)_k=x(x-1)cdots(x-k+1)$ is the falling factorial. If that $(-1)^k$ was not there then the formula would've been $(alpha+beta)_n$. Also, is there a combinatorical intepretation of this number?
combinatorics binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Suppose $alpha, beta, n$ are three non-negative integers with $nleq min(alpha, beta)$. Is there a closed formula (or a combinatorical concept) for
$$
C_n^{(alpha, beta)}:=sum_{k=0}^n binom{n}{k} (-1)^k (alpha)_{n-k}(beta)_{k}=n!
sum_{k=0}^n binom{alpha}{n-k} binom{beta}{k}(-1)^k
$$
here $(x)_k=x(x-1)cdots(x-k+1)$ is the falling factorial. If that $(-1)^k$ was not there then the formula would've been $(alpha+beta)_n$. Also, is there a combinatorical intepretation of this number?
combinatorics binomial-coefficients
$endgroup$
Suppose $alpha, beta, n$ are three non-negative integers with $nleq min(alpha, beta)$. Is there a closed formula (or a combinatorical concept) for
$$
C_n^{(alpha, beta)}:=sum_{k=0}^n binom{n}{k} (-1)^k (alpha)_{n-k}(beta)_{k}=n!
sum_{k=0}^n binom{alpha}{n-k} binom{beta}{k}(-1)^k
$$
here $(x)_k=x(x-1)cdots(x-k+1)$ is the falling factorial. If that $(-1)^k$ was not there then the formula would've been $(alpha+beta)_n$. Also, is there a combinatorical intepretation of this number?
combinatorics binomial-coefficients
combinatorics binomial-coefficients
asked Dec 18 '18 at 23:55
HamedHamed
4,813622
4,813622
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Maple gets
$$ {alphachoose n}{mbox{$_2$F$_1$}(-n,-beta;,alpha-n+1;,-1)}$$
$endgroup$
$begingroup$
What does the notation₂F₁
mean?
$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
1
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045853%2fis-there-a-closed-formula-for-sum-k-0n-binom-alphan-k-binom-betak%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Maple gets
$$ {alphachoose n}{mbox{$_2$F$_1$}(-n,-beta;,alpha-n+1;,-1)}$$
$endgroup$
$begingroup$
What does the notation₂F₁
mean?
$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
1
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
add a comment |
$begingroup$
Maple gets
$$ {alphachoose n}{mbox{$_2$F$_1$}(-n,-beta;,alpha-n+1;,-1)}$$
$endgroup$
$begingroup$
What does the notation₂F₁
mean?
$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
1
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
add a comment |
$begingroup$
Maple gets
$$ {alphachoose n}{mbox{$_2$F$_1$}(-n,-beta;,alpha-n+1;,-1)}$$
$endgroup$
Maple gets
$$ {alphachoose n}{mbox{$_2$F$_1$}(-n,-beta;,alpha-n+1;,-1)}$$
answered Dec 19 '18 at 0:02
Robert IsraelRobert Israel
323k23213467
323k23213467
$begingroup$
What does the notation₂F₁
mean?
$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
1
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
add a comment |
$begingroup$
What does the notation₂F₁
mean?
$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
1
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
$begingroup$
What does the notation
₂F₁
mean?$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
$begingroup$
What does the notation
₂F₁
mean?$endgroup$
– Gregory Nisbet
Dec 19 '18 at 0:59
1
1
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
$begingroup$
@GregoryNisbet Hypergeometric function.
$endgroup$
– Kemono Chen
Dec 19 '18 at 1:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045853%2fis-there-a-closed-formula-for-sum-k-0n-binom-alphan-k-binom-betak%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown