Solving the limit of $lim_{xto 1-n} (exp(2 pi i x)-1)Gamma(x)$












0












$begingroup$


I am reading the book Introduction to Cyclotomic Fields. I found the following limit on page number 33. I have no idea how to obtain the following limit.



$$lim_{xto 1-n} (e^{(2 pi i x)}-1)Gamma(x)=frac{(2pi i)(-1)^{(n-1)}}{(n-1)!}.$$



Do we need to use L'Hospital's rule for this?
Is there any connection with the residue of Gamma function at negative values?



The residue at $z=k$ is given by
$operatorname{Re}s_{z=k} Gamma(z)=frac{(-1)^{k}}{k!}.$



Please help me to understand this.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Should that be $lim_{xto1-n}cdots$?
    $endgroup$
    – Lord Shark the Unknown
    Dec 18 '18 at 18:51










  • $begingroup$
    Yes, it should be $1-n$.
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 20:23










  • $begingroup$
    I think you mean the residue at $z=-k,$ not $z=k.$
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 20:42
















0












$begingroup$


I am reading the book Introduction to Cyclotomic Fields. I found the following limit on page number 33. I have no idea how to obtain the following limit.



$$lim_{xto 1-n} (e^{(2 pi i x)}-1)Gamma(x)=frac{(2pi i)(-1)^{(n-1)}}{(n-1)!}.$$



Do we need to use L'Hospital's rule for this?
Is there any connection with the residue of Gamma function at negative values?



The residue at $z=k$ is given by
$operatorname{Re}s_{z=k} Gamma(z)=frac{(-1)^{k}}{k!}.$



Please help me to understand this.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Should that be $lim_{xto1-n}cdots$?
    $endgroup$
    – Lord Shark the Unknown
    Dec 18 '18 at 18:51










  • $begingroup$
    Yes, it should be $1-n$.
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 20:23










  • $begingroup$
    I think you mean the residue at $z=-k,$ not $z=k.$
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 20:42














0












0








0





$begingroup$


I am reading the book Introduction to Cyclotomic Fields. I found the following limit on page number 33. I have no idea how to obtain the following limit.



$$lim_{xto 1-n} (e^{(2 pi i x)}-1)Gamma(x)=frac{(2pi i)(-1)^{(n-1)}}{(n-1)!}.$$



Do we need to use L'Hospital's rule for this?
Is there any connection with the residue of Gamma function at negative values?



The residue at $z=k$ is given by
$operatorname{Re}s_{z=k} Gamma(z)=frac{(-1)^{k}}{k!}.$



Please help me to understand this.










share|cite|improve this question











$endgroup$




I am reading the book Introduction to Cyclotomic Fields. I found the following limit on page number 33. I have no idea how to obtain the following limit.



$$lim_{xto 1-n} (e^{(2 pi i x)}-1)Gamma(x)=frac{(2pi i)(-1)^{(n-1)}}{(n-1)!}.$$



Do we need to use L'Hospital's rule for this?
Is there any connection with the residue of Gamma function at negative values?



The residue at $z=k$ is given by
$operatorname{Re}s_{z=k} Gamma(z)=frac{(-1)^{k}}{k!}.$



Please help me to understand this.







complex-analysis number-theory limits gamma-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 18 '18 at 21:09









Thomas Andrews

130k11146297




130k11146297










asked Dec 18 '18 at 18:48









Soma WickSoma Wick

305




305








  • 1




    $begingroup$
    Should that be $lim_{xto1-n}cdots$?
    $endgroup$
    – Lord Shark the Unknown
    Dec 18 '18 at 18:51










  • $begingroup$
    Yes, it should be $1-n$.
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 20:23










  • $begingroup$
    I think you mean the residue at $z=-k,$ not $z=k.$
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 20:42














  • 1




    $begingroup$
    Should that be $lim_{xto1-n}cdots$?
    $endgroup$
    – Lord Shark the Unknown
    Dec 18 '18 at 18:51










  • $begingroup$
    Yes, it should be $1-n$.
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 20:23










  • $begingroup$
    I think you mean the residue at $z=-k,$ not $z=k.$
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 20:42








1




1




$begingroup$
Should that be $lim_{xto1-n}cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 18 '18 at 18:51




$begingroup$
Should that be $lim_{xto1-n}cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 18 '18 at 18:51












$begingroup$
Yes, it should be $1-n$.
$endgroup$
– Soma Wick
Dec 18 '18 at 20:23




$begingroup$
Yes, it should be $1-n$.
$endgroup$
– Soma Wick
Dec 18 '18 at 20:23












$begingroup$
I think you mean the residue at $z=-k,$ not $z=k.$
$endgroup$
– Thomas Andrews
Dec 18 '18 at 20:42




$begingroup$
I think you mean the residue at $z=-k,$ not $z=k.$
$endgroup$
– Thomas Andrews
Dec 18 '18 at 20:42










1 Answer
1






active

oldest

votes


















0












$begingroup$

Start:



Note that if $f(x)=e^{2pi i x}$ then $f(1-n)=1$ when $n$ is an integer, and you can write your limit is $$lim_{xto 1-n} frac{f(x)-f(1-n)}{x-(1-n)} cdot (x-(1-n)) Gamma(x)=f'(1-n) cdot lim_{nto 1-n}(x-(1-n))Gamma(x)$$



But $f'(1-n)=2pi i$, so you need to show:



$$lim_{xto 1-n} (x-(1-n))Gamma(x)=frac{(-1)^{n-1}}{(n-1)!}$$



This follows from your residue result (corrected to be at $z=-k$,) if you can show that the pole at $z=1-n$ is of degree $1.$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:12












  • $begingroup$
    The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 21:15












  • $begingroup$
    I understood. Thank you
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:35











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045534%2fsolving-the-limit-of-lim-x-to-1-n-exp2-pi-i-x-1-gammax%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Start:



Note that if $f(x)=e^{2pi i x}$ then $f(1-n)=1$ when $n$ is an integer, and you can write your limit is $$lim_{xto 1-n} frac{f(x)-f(1-n)}{x-(1-n)} cdot (x-(1-n)) Gamma(x)=f'(1-n) cdot lim_{nto 1-n}(x-(1-n))Gamma(x)$$



But $f'(1-n)=2pi i$, so you need to show:



$$lim_{xto 1-n} (x-(1-n))Gamma(x)=frac{(-1)^{n-1}}{(n-1)!}$$



This follows from your residue result (corrected to be at $z=-k$,) if you can show that the pole at $z=1-n$ is of degree $1.$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:12












  • $begingroup$
    The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 21:15












  • $begingroup$
    I understood. Thank you
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:35
















0












$begingroup$

Start:



Note that if $f(x)=e^{2pi i x}$ then $f(1-n)=1$ when $n$ is an integer, and you can write your limit is $$lim_{xto 1-n} frac{f(x)-f(1-n)}{x-(1-n)} cdot (x-(1-n)) Gamma(x)=f'(1-n) cdot lim_{nto 1-n}(x-(1-n))Gamma(x)$$



But $f'(1-n)=2pi i$, so you need to show:



$$lim_{xto 1-n} (x-(1-n))Gamma(x)=frac{(-1)^{n-1}}{(n-1)!}$$



This follows from your residue result (corrected to be at $z=-k$,) if you can show that the pole at $z=1-n$ is of degree $1.$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:12












  • $begingroup$
    The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 21:15












  • $begingroup$
    I understood. Thank you
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:35














0












0








0





$begingroup$

Start:



Note that if $f(x)=e^{2pi i x}$ then $f(1-n)=1$ when $n$ is an integer, and you can write your limit is $$lim_{xto 1-n} frac{f(x)-f(1-n)}{x-(1-n)} cdot (x-(1-n)) Gamma(x)=f'(1-n) cdot lim_{nto 1-n}(x-(1-n))Gamma(x)$$



But $f'(1-n)=2pi i$, so you need to show:



$$lim_{xto 1-n} (x-(1-n))Gamma(x)=frac{(-1)^{n-1}}{(n-1)!}$$



This follows from your residue result (corrected to be at $z=-k$,) if you can show that the pole at $z=1-n$ is of degree $1.$






share|cite|improve this answer











$endgroup$



Start:



Note that if $f(x)=e^{2pi i x}$ then $f(1-n)=1$ when $n$ is an integer, and you can write your limit is $$lim_{xto 1-n} frac{f(x)-f(1-n)}{x-(1-n)} cdot (x-(1-n)) Gamma(x)=f'(1-n) cdot lim_{nto 1-n}(x-(1-n))Gamma(x)$$



But $f'(1-n)=2pi i$, so you need to show:



$$lim_{xto 1-n} (x-(1-n))Gamma(x)=frac{(-1)^{n-1}}{(n-1)!}$$



This follows from your residue result (corrected to be at $z=-k$,) if you can show that the pole at $z=1-n$ is of degree $1.$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 18 '18 at 20:43

























answered Dec 18 '18 at 20:36









Thomas AndrewsThomas Andrews

130k11146297




130k11146297












  • $begingroup$
    Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:12












  • $begingroup$
    The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 21:15












  • $begingroup$
    I understood. Thank you
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:35


















  • $begingroup$
    Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:12












  • $begingroup$
    The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
    $endgroup$
    – Thomas Andrews
    Dec 18 '18 at 21:15












  • $begingroup$
    I understood. Thank you
    $endgroup$
    – Soma Wick
    Dec 18 '18 at 21:35
















$begingroup$
Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
$endgroup$
– Soma Wick
Dec 18 '18 at 21:12






$begingroup$
Thank you very much. But I don`t understand the last part. How can we get the result with the residue part? Is there a theory on that?
$endgroup$
– Soma Wick
Dec 18 '18 at 21:12














$begingroup$
The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
$endgroup$
– Thomas Andrews
Dec 18 '18 at 21:15






$begingroup$
The residue for a function $f(x)=sum_{k=-N}^{infty} a_n(x-x_0)^k$ at $x=x_0$ is $a_{-1}$. If $N=-1,$ so the pole at $x_0$ is not of degree $2$ or more, then the reside at $x_0$ is $lim_{xto x_0} (x-x_0)f(x).$ @SomaWick
$endgroup$
– Thomas Andrews
Dec 18 '18 at 21:15














$begingroup$
I understood. Thank you
$endgroup$
– Soma Wick
Dec 18 '18 at 21:35




$begingroup$
I understood. Thank you
$endgroup$
– Soma Wick
Dec 18 '18 at 21:35


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045534%2fsolving-the-limit-of-lim-x-to-1-n-exp2-pi-i-x-1-gammax%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei