Evaluate $sumlimits_{n=0}^{infty}(-1)^nsumlimits_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}$












4












$begingroup$



Evaluate $g(k)$ if $sumlimits_{n=0}^{infty}(-1)^nsumlimits_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)$.




The well-known Gregory Series,



$$sum_{n=0}^{infty}frac{(-1)^n}{2n+1}=frac{pi}{4}tag1$$



Let us generalize $(1)$ in terms of binomial coefficients ${k choose j}$,



Where $kge0$



$$sum_{n=0}^{infty}(-1)^nsum_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)tag2$$



Expand $(2)$ for $k=1,2$ and $3$,



$$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{1}{2n+3}right)=frac{pi}{2}-1tag3$$



$$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-2frac{1}{2n+3}+frac{1}{2n+5}right)=pi-frac{8}{3}tag4$$



$$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{3}{2n+3}+frac{3}{2n+5}-frac{1}{2n+5}right)=2pi-frac{88}{15}tag5$$



The pattern for $g(k)$ is not so obvious, I was not able to determine the closed form $g(k)$



Q:
How can we find the closed form for $(2)?$










share|cite|improve this question











$endgroup$

















    4












    $begingroup$



    Evaluate $g(k)$ if $sumlimits_{n=0}^{infty}(-1)^nsumlimits_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)$.




    The well-known Gregory Series,



    $$sum_{n=0}^{infty}frac{(-1)^n}{2n+1}=frac{pi}{4}tag1$$



    Let us generalize $(1)$ in terms of binomial coefficients ${k choose j}$,



    Where $kge0$



    $$sum_{n=0}^{infty}(-1)^nsum_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)tag2$$



    Expand $(2)$ for $k=1,2$ and $3$,



    $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{1}{2n+3}right)=frac{pi}{2}-1tag3$$



    $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-2frac{1}{2n+3}+frac{1}{2n+5}right)=pi-frac{8}{3}tag4$$



    $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{3}{2n+3}+frac{3}{2n+5}-frac{1}{2n+5}right)=2pi-frac{88}{15}tag5$$



    The pattern for $g(k)$ is not so obvious, I was not able to determine the closed form $g(k)$



    Q:
    How can we find the closed form for $(2)?$










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$



      Evaluate $g(k)$ if $sumlimits_{n=0}^{infty}(-1)^nsumlimits_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)$.




      The well-known Gregory Series,



      $$sum_{n=0}^{infty}frac{(-1)^n}{2n+1}=frac{pi}{4}tag1$$



      Let us generalize $(1)$ in terms of binomial coefficients ${k choose j}$,



      Where $kge0$



      $$sum_{n=0}^{infty}(-1)^nsum_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)tag2$$



      Expand $(2)$ for $k=1,2$ and $3$,



      $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{1}{2n+3}right)=frac{pi}{2}-1tag3$$



      $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-2frac{1}{2n+3}+frac{1}{2n+5}right)=pi-frac{8}{3}tag4$$



      $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{3}{2n+3}+frac{3}{2n+5}-frac{1}{2n+5}right)=2pi-frac{88}{15}tag5$$



      The pattern for $g(k)$ is not so obvious, I was not able to determine the closed form $g(k)$



      Q:
      How can we find the closed form for $(2)?$










      share|cite|improve this question











      $endgroup$





      Evaluate $g(k)$ if $sumlimits_{n=0}^{infty}(-1)^nsumlimits_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)$.




      The well-known Gregory Series,



      $$sum_{n=0}^{infty}frac{(-1)^n}{2n+1}=frac{pi}{4}tag1$$



      Let us generalize $(1)$ in terms of binomial coefficients ${k choose j}$,



      Where $kge0$



      $$sum_{n=0}^{infty}(-1)^nsum_{j=0}^{k}{k choose j}frac{(-1)^j}{2n+2j+1}=frac{pi}{2^{2-k}}+g(k)tag2$$



      Expand $(2)$ for $k=1,2$ and $3$,



      $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{1}{2n+3}right)=frac{pi}{2}-1tag3$$



      $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-2frac{1}{2n+3}+frac{1}{2n+5}right)=pi-frac{8}{3}tag4$$



      $$sum_{n=0}^{infty}(-1)^nleft(frac{1}{2n+1}-frac{3}{2n+3}+frac{3}{2n+5}-frac{1}{2n+5}right)=2pi-frac{88}{15}tag5$$



      The pattern for $g(k)$ is not so obvious, I was not able to determine the closed form $g(k)$



      Q:
      How can we find the closed form for $(2)?$







      sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 1 at 17:35









      Did

      248k23224463




      248k23224463










      asked Dec 31 '18 at 16:32









      user583851user583851

      49919




      49919






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          We will make use of the identity
          $$
          sum_{k=0}^n(-1)^kbinom{n}{k}frac1{k+alpha}=frac{n!,Gamma(alpha)}{Gamma(n+1+alpha)}tag1
          $$

          which can be proven by induction on $n$.





          The sum in the question is
          $$
          begin{align}
          &sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{2n+2j+1}tag2\
          &=frac12sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{n+j+frac12}tag3\
          &=frac12sum_{n=0}^infty(-1)^nfrac{k!,Gamma!left(n+frac12right)}{Gamma!left(n+k+frac32right)}tag4\
          &=frac12sum_{n=0}^infty(-1)^nint_0^1(1-t)^kt^{n-frac12},mathrm{d}ttag5\
          &=frac12int_0^1frac{(1-t)^k}{(1+t)sqrt{t}},mathrm{d}ttag6\
          &=int_0^1frac{left(1-t^2right)^k}{1+t^2},mathrm{d}ttag7\
          &=int_0^1frac{left(2-left(1+t^2right)right)^k}{1+t^2},mathrm{d}ttag8\
          &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}int_0^1left(1+t^2right)^{j-1},mathrm{d}tright)tag9\
          &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}sum_{i=0}^{j-1}binom{j-1}{i}frac1{2i+1}right)tag{10}\
          &=2^kleft(fracpi4-frac12sum_{j=0}^{k-1}left(-frac12right)^jsum_{m=1}^kbinom{k-m}{j}sum_{i=0}^{j}binom{j}{i}frac1{2i+1}right)tag{11}\
          &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=i}^{k-m}left(-frac12right)^jbinom{k-m}{i}binom{k-m-i}{j-i}frac1{2i+1}right)tag{12}\
          &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=0}^{k-m-i}left(-frac12right)^{j+i}binom{k-m}{i}binom{k-m-i}{j}frac1{2i+1}right)tag{13}\
          &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}left(-frac12right)^ibinom{k-m}{i}left(frac12right)^{k-m-i}frac1{2i+1}right)tag{14}\
          &=2^kleft(fracpi4-frac14sum_{m=1}^ksum_{i=0}^{k-m}(-1)^ibinom{k-m}{i}left(frac12right)^{k-m}frac1{i+frac12}right)tag{15}\
          &=2^kleft(fracpi4-frac14sum_{m=1}^kleft(frac12right)^{k-m}frac{(k-m)!,Gamma!left(frac12right)}{Gamma!left(k-m+frac32right)}right)tag{16}\
          &=2^kleft(fracpi4-frac14sum_{m=0}^{k-1}left(frac12right)^mfrac{m!,Gamma!left(frac12right)}{Gamma!left(m+frac32right)}right)tag{17}\
          &=2^kleft(fracpi4-frac12sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}right)tag{18}\
          end{align}
          $$

          Explanation:
          $phantom{1}(3)$: bring $frac12$ out front
          $phantom{1}(4)$: apply $(1)$
          $phantom{1}(5)$: apply the Beta Function
          $phantom{1}(6)$: sum in $n$
          $phantom{1}(7)$: substitute $tmapsto t^2$
          $phantom{1}(8)$: $1-t^2=2-left(1+t^2right)$
          $phantom{1}(9)$: apply the Binomial Theorem
          $(10)$: apply the Binomial Theorem and integrate
          $(11)$: $binom{k}{j}=sumlimits_{m=1}^kbinom{k-m}{j-1}$ and substitute $jmapsto j+1$
          $(12)$: reorder summation and $binom{k-m}{j}binom{j}{i}=binom{k-m}{i}binom{k-m-i}{j-i}$
          $(13)$: substitute $jmapsto j+i$
          $(14)$: apply the Binomial Theorem
          $(15)$: shift factors of $2$
          $(16)$: apply $(1)$
          $(17)$: substitute $mmapsto k-m$
          $(18)$: rewrite the Gamma functions as factorials



          Thus,
          $$
          bbox[5px,border:2px solid #C0A000]{g(k)=-2^{k-1}sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}}tag{19}
          $$





          $(4)$ says that asymptotically, the full sum from the question is $frac12sqrt{fracpi{k}}$, which vanishes as $ktoinfty$. Thus, the sum in $(18)$ must converge quickly to $fracpi2$. In fact, the sum in $(18)$ is the partial sum of the sum in this question whose limit is $fracpi2$.






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            Note that the partial fractions decomposition of the inverse
            of the Rising Factorial gives:
            $$
            eqalign{
            & left( {x - 1} right)^{,underline {, - left( {m + 1} right),} } = {1 over {x^{,overline {,m + 1,} } }}
            = {{Gamma (x)} over {Gamma (x + m + 1)}} = ;quad left| {;0 le {rm integer }, m} right.quad = cr
            & = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {left( {m - k} right)!k!}}} right)}
            = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {m!}}binom{m}{k}
            } right)} cr}
            $$



            So
            $$
            eqalign{
            & sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
            {1 over {2n + 2j + 1}}} = cr
            & = {1 over 2}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
            {1 over {left( {n + 1/2 + j} right)}}} = cr
            & = {{k!} over {2left( {n + 1/2} right)^{,overline {,k + 1,} } }} cr}
            $$



            We have then that the sum in $n$ is



            $$
            eqalign{
            & S(k) = sumlimits_{0, le ,n} {left( { - 1} right)^{,n} sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
            k cr
            j cr} right){1 over {2n + 2j + 1}}} } = cr
            & = {1 over 2}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{k!} over {left( {n + 1/2} right)^{,overline {,k + 1,} } }}} = cr
            & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,k + 1,} } }
            over {left( {1 + n - 1/2} right)^{,overline {,k + 1,} } }}} = cr
            & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,n - 1/2,} } }
            over {left( {2 + k} right)^{,overline {,n - 1/2,} } }}} = cr
            & = {{1^{,overline {, - 1/2,} } } over {2left( {k + 1} right)left( {2 + k} right)^{,overline {, - 1/2,} } }}
            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
            & = {{Gamma left( {1/2} right)Gamma left( {2 + k} right)} over {2left( {k + 1} right)Gamma left( 1 right)Gamma left( {3/2 + k} right) }}
            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
            & = {{Gamma left( {1/2} right)Gamma left( {1 + k} right)} over {2,Gamma left( {3/2 + k} right)}}{}_2F_{,1} left( {left. {matrix{
            {1/2;,;1} cr
            {k + 3/2} cr
            } ;} right| - 1} right) = cr
            & = 2^{,2,k} {{left( {k!} right)^{,2} } over {left( {2k + 1} right)!}};;{}_2F_{,1} left( {left. {matrix{
            {1/2;,;1} cr
            {k + 3/2} cr
            } ;} right| - 1} right) cr}
            $$



            where in the mid of the derivation we have used the identity
            $$
            {{z^{,overline {,w,} } } over {left( {z + a} right)^{,overline {,w,} } }} = {{z^{,overline {,a,} } } over {left( {z + w} right)^{,overline {,a,} } }}
            $$

            and at the end the duplication formula for Gamma
            $$
            Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right) = 2^{,2,z - 1} {{Gamma left( z right)Gamma left( {z + 1/2} right)} over {Gamma left( {1/2} right)}}
            $$



            Alternative Approach



            Actually there is a more straight alternative aproach through the Digamma Function
            $$
            eqalign{
            & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
            k cr
            j cr} right)sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
            & = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
            k cr
            j cr} right)sumlimits_{0, le ,m} {left( {{1 over {4m + 2j + 1}} - {1 over {4m + 2j + 3}}} right)} } = cr
            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
            k cr
            j cr} right)sumlimits_{0, le ,m} {left( {{1 over {m + j/2 + 1/4}} - {1 over {m + j/2 + 3/4}}} right)} } = cr
            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
            k cr
            j cr} right)left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
            k cr
            2j cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
            k cr
            2j + 1 cr} right)left( {psi left( {j + 5/4} right) - psi left( {j + 3/4} right)} right)} = cr
            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
            k + 1 cr
            2j + 1 cr} right)psi left( {j + 3/4} right) - left( matrix{
            k cr
            2j cr} right)psi left( {j + 1/4} right) - left( matrix{
            k cr
            2j + 1 cr} right)psi left( {j + 1 + 1/4} right)} = cr
            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
            k + 1 cr
            2j + 1 cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
            k cr
            2j + 1 cr} right){1 over {j + 1/4}}} cr}
            $$



            Since we can write (re. for instance to this page)
            $$
            eqalign{
            & psi left( {j + 3/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 3}}} + {pi over 2} - ln 8 - gamma
            = psi left( {j + 3/4} right) - left( {psi left( {3/4} right) - left( {{pi over 2} - ln 8 - gamma } right)} right) cr
            & psi left( {j + 1/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 1}}} - {pi over 2} - ln 8 - gamma
            = psi left( {j + 1/4} right) - left( {psi left( {1/4} right) - left( { - {pi over 2} - ln 8 - gamma } right)} right) cr}
            $$

            we arrive to express the sum as
            $$
            eqalign{
            & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
            left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
            & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
            left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 3} right)left( {4,l + 1} right)}}} } right)}
            - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} = cr
            & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
            left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 2} right)^{,2} - 1}}} } right)}
            - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} cr}
            $$



            Interesting the comparison of this expression with the one given by
            @robjohn






            share|cite|improve this answer











            $endgroup$





















              1












              $begingroup$

              (2) is
              $$frac11-frac23+frac25-frac27+cdots=-1+2left(frac11-frac13+frac15-cdotsright),$$
              (3) is
              $$frac11-frac33+frac45-frac47+cdots=-3+frac13+4left(frac11-frac13+frac15-cdotsright),$$
              (4) is
              $$frac11-frac43+frac75-frac87+cdots=-7+frac43-frac15+8left(frac11-frac13+frac15-cdotsright),$$
              etc.



              In general, one gets
              $$2^kfracpi4-sum_{j=0}^{k-1}(-1)^jfrac1{2j+1}
              left(2^k-sum_{i=0}^j{kchoose i}right).$$






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057853%2fevaluate-sum-limits-n-0-infty-1n-sum-limits-j-0kk-choose-j-fra%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3












                $begingroup$

                We will make use of the identity
                $$
                sum_{k=0}^n(-1)^kbinom{n}{k}frac1{k+alpha}=frac{n!,Gamma(alpha)}{Gamma(n+1+alpha)}tag1
                $$

                which can be proven by induction on $n$.





                The sum in the question is
                $$
                begin{align}
                &sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{2n+2j+1}tag2\
                &=frac12sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{n+j+frac12}tag3\
                &=frac12sum_{n=0}^infty(-1)^nfrac{k!,Gamma!left(n+frac12right)}{Gamma!left(n+k+frac32right)}tag4\
                &=frac12sum_{n=0}^infty(-1)^nint_0^1(1-t)^kt^{n-frac12},mathrm{d}ttag5\
                &=frac12int_0^1frac{(1-t)^k}{(1+t)sqrt{t}},mathrm{d}ttag6\
                &=int_0^1frac{left(1-t^2right)^k}{1+t^2},mathrm{d}ttag7\
                &=int_0^1frac{left(2-left(1+t^2right)right)^k}{1+t^2},mathrm{d}ttag8\
                &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}int_0^1left(1+t^2right)^{j-1},mathrm{d}tright)tag9\
                &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}sum_{i=0}^{j-1}binom{j-1}{i}frac1{2i+1}right)tag{10}\
                &=2^kleft(fracpi4-frac12sum_{j=0}^{k-1}left(-frac12right)^jsum_{m=1}^kbinom{k-m}{j}sum_{i=0}^{j}binom{j}{i}frac1{2i+1}right)tag{11}\
                &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=i}^{k-m}left(-frac12right)^jbinom{k-m}{i}binom{k-m-i}{j-i}frac1{2i+1}right)tag{12}\
                &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=0}^{k-m-i}left(-frac12right)^{j+i}binom{k-m}{i}binom{k-m-i}{j}frac1{2i+1}right)tag{13}\
                &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}left(-frac12right)^ibinom{k-m}{i}left(frac12right)^{k-m-i}frac1{2i+1}right)tag{14}\
                &=2^kleft(fracpi4-frac14sum_{m=1}^ksum_{i=0}^{k-m}(-1)^ibinom{k-m}{i}left(frac12right)^{k-m}frac1{i+frac12}right)tag{15}\
                &=2^kleft(fracpi4-frac14sum_{m=1}^kleft(frac12right)^{k-m}frac{(k-m)!,Gamma!left(frac12right)}{Gamma!left(k-m+frac32right)}right)tag{16}\
                &=2^kleft(fracpi4-frac14sum_{m=0}^{k-1}left(frac12right)^mfrac{m!,Gamma!left(frac12right)}{Gamma!left(m+frac32right)}right)tag{17}\
                &=2^kleft(fracpi4-frac12sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}right)tag{18}\
                end{align}
                $$

                Explanation:
                $phantom{1}(3)$: bring $frac12$ out front
                $phantom{1}(4)$: apply $(1)$
                $phantom{1}(5)$: apply the Beta Function
                $phantom{1}(6)$: sum in $n$
                $phantom{1}(7)$: substitute $tmapsto t^2$
                $phantom{1}(8)$: $1-t^2=2-left(1+t^2right)$
                $phantom{1}(9)$: apply the Binomial Theorem
                $(10)$: apply the Binomial Theorem and integrate
                $(11)$: $binom{k}{j}=sumlimits_{m=1}^kbinom{k-m}{j-1}$ and substitute $jmapsto j+1$
                $(12)$: reorder summation and $binom{k-m}{j}binom{j}{i}=binom{k-m}{i}binom{k-m-i}{j-i}$
                $(13)$: substitute $jmapsto j+i$
                $(14)$: apply the Binomial Theorem
                $(15)$: shift factors of $2$
                $(16)$: apply $(1)$
                $(17)$: substitute $mmapsto k-m$
                $(18)$: rewrite the Gamma functions as factorials



                Thus,
                $$
                bbox[5px,border:2px solid #C0A000]{g(k)=-2^{k-1}sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}}tag{19}
                $$





                $(4)$ says that asymptotically, the full sum from the question is $frac12sqrt{fracpi{k}}$, which vanishes as $ktoinfty$. Thus, the sum in $(18)$ must converge quickly to $fracpi2$. In fact, the sum in $(18)$ is the partial sum of the sum in this question whose limit is $fracpi2$.






                share|cite|improve this answer











                $endgroup$


















                  3












                  $begingroup$

                  We will make use of the identity
                  $$
                  sum_{k=0}^n(-1)^kbinom{n}{k}frac1{k+alpha}=frac{n!,Gamma(alpha)}{Gamma(n+1+alpha)}tag1
                  $$

                  which can be proven by induction on $n$.





                  The sum in the question is
                  $$
                  begin{align}
                  &sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{2n+2j+1}tag2\
                  &=frac12sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{n+j+frac12}tag3\
                  &=frac12sum_{n=0}^infty(-1)^nfrac{k!,Gamma!left(n+frac12right)}{Gamma!left(n+k+frac32right)}tag4\
                  &=frac12sum_{n=0}^infty(-1)^nint_0^1(1-t)^kt^{n-frac12},mathrm{d}ttag5\
                  &=frac12int_0^1frac{(1-t)^k}{(1+t)sqrt{t}},mathrm{d}ttag6\
                  &=int_0^1frac{left(1-t^2right)^k}{1+t^2},mathrm{d}ttag7\
                  &=int_0^1frac{left(2-left(1+t^2right)right)^k}{1+t^2},mathrm{d}ttag8\
                  &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}int_0^1left(1+t^2right)^{j-1},mathrm{d}tright)tag9\
                  &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}sum_{i=0}^{j-1}binom{j-1}{i}frac1{2i+1}right)tag{10}\
                  &=2^kleft(fracpi4-frac12sum_{j=0}^{k-1}left(-frac12right)^jsum_{m=1}^kbinom{k-m}{j}sum_{i=0}^{j}binom{j}{i}frac1{2i+1}right)tag{11}\
                  &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=i}^{k-m}left(-frac12right)^jbinom{k-m}{i}binom{k-m-i}{j-i}frac1{2i+1}right)tag{12}\
                  &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=0}^{k-m-i}left(-frac12right)^{j+i}binom{k-m}{i}binom{k-m-i}{j}frac1{2i+1}right)tag{13}\
                  &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}left(-frac12right)^ibinom{k-m}{i}left(frac12right)^{k-m-i}frac1{2i+1}right)tag{14}\
                  &=2^kleft(fracpi4-frac14sum_{m=1}^ksum_{i=0}^{k-m}(-1)^ibinom{k-m}{i}left(frac12right)^{k-m}frac1{i+frac12}right)tag{15}\
                  &=2^kleft(fracpi4-frac14sum_{m=1}^kleft(frac12right)^{k-m}frac{(k-m)!,Gamma!left(frac12right)}{Gamma!left(k-m+frac32right)}right)tag{16}\
                  &=2^kleft(fracpi4-frac14sum_{m=0}^{k-1}left(frac12right)^mfrac{m!,Gamma!left(frac12right)}{Gamma!left(m+frac32right)}right)tag{17}\
                  &=2^kleft(fracpi4-frac12sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}right)tag{18}\
                  end{align}
                  $$

                  Explanation:
                  $phantom{1}(3)$: bring $frac12$ out front
                  $phantom{1}(4)$: apply $(1)$
                  $phantom{1}(5)$: apply the Beta Function
                  $phantom{1}(6)$: sum in $n$
                  $phantom{1}(7)$: substitute $tmapsto t^2$
                  $phantom{1}(8)$: $1-t^2=2-left(1+t^2right)$
                  $phantom{1}(9)$: apply the Binomial Theorem
                  $(10)$: apply the Binomial Theorem and integrate
                  $(11)$: $binom{k}{j}=sumlimits_{m=1}^kbinom{k-m}{j-1}$ and substitute $jmapsto j+1$
                  $(12)$: reorder summation and $binom{k-m}{j}binom{j}{i}=binom{k-m}{i}binom{k-m-i}{j-i}$
                  $(13)$: substitute $jmapsto j+i$
                  $(14)$: apply the Binomial Theorem
                  $(15)$: shift factors of $2$
                  $(16)$: apply $(1)$
                  $(17)$: substitute $mmapsto k-m$
                  $(18)$: rewrite the Gamma functions as factorials



                  Thus,
                  $$
                  bbox[5px,border:2px solid #C0A000]{g(k)=-2^{k-1}sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}}tag{19}
                  $$





                  $(4)$ says that asymptotically, the full sum from the question is $frac12sqrt{fracpi{k}}$, which vanishes as $ktoinfty$. Thus, the sum in $(18)$ must converge quickly to $fracpi2$. In fact, the sum in $(18)$ is the partial sum of the sum in this question whose limit is $fracpi2$.






                  share|cite|improve this answer











                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    We will make use of the identity
                    $$
                    sum_{k=0}^n(-1)^kbinom{n}{k}frac1{k+alpha}=frac{n!,Gamma(alpha)}{Gamma(n+1+alpha)}tag1
                    $$

                    which can be proven by induction on $n$.





                    The sum in the question is
                    $$
                    begin{align}
                    &sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{2n+2j+1}tag2\
                    &=frac12sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{n+j+frac12}tag3\
                    &=frac12sum_{n=0}^infty(-1)^nfrac{k!,Gamma!left(n+frac12right)}{Gamma!left(n+k+frac32right)}tag4\
                    &=frac12sum_{n=0}^infty(-1)^nint_0^1(1-t)^kt^{n-frac12},mathrm{d}ttag5\
                    &=frac12int_0^1frac{(1-t)^k}{(1+t)sqrt{t}},mathrm{d}ttag6\
                    &=int_0^1frac{left(1-t^2right)^k}{1+t^2},mathrm{d}ttag7\
                    &=int_0^1frac{left(2-left(1+t^2right)right)^k}{1+t^2},mathrm{d}ttag8\
                    &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}int_0^1left(1+t^2right)^{j-1},mathrm{d}tright)tag9\
                    &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}sum_{i=0}^{j-1}binom{j-1}{i}frac1{2i+1}right)tag{10}\
                    &=2^kleft(fracpi4-frac12sum_{j=0}^{k-1}left(-frac12right)^jsum_{m=1}^kbinom{k-m}{j}sum_{i=0}^{j}binom{j}{i}frac1{2i+1}right)tag{11}\
                    &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=i}^{k-m}left(-frac12right)^jbinom{k-m}{i}binom{k-m-i}{j-i}frac1{2i+1}right)tag{12}\
                    &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=0}^{k-m-i}left(-frac12right)^{j+i}binom{k-m}{i}binom{k-m-i}{j}frac1{2i+1}right)tag{13}\
                    &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}left(-frac12right)^ibinom{k-m}{i}left(frac12right)^{k-m-i}frac1{2i+1}right)tag{14}\
                    &=2^kleft(fracpi4-frac14sum_{m=1}^ksum_{i=0}^{k-m}(-1)^ibinom{k-m}{i}left(frac12right)^{k-m}frac1{i+frac12}right)tag{15}\
                    &=2^kleft(fracpi4-frac14sum_{m=1}^kleft(frac12right)^{k-m}frac{(k-m)!,Gamma!left(frac12right)}{Gamma!left(k-m+frac32right)}right)tag{16}\
                    &=2^kleft(fracpi4-frac14sum_{m=0}^{k-1}left(frac12right)^mfrac{m!,Gamma!left(frac12right)}{Gamma!left(m+frac32right)}right)tag{17}\
                    &=2^kleft(fracpi4-frac12sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}right)tag{18}\
                    end{align}
                    $$

                    Explanation:
                    $phantom{1}(3)$: bring $frac12$ out front
                    $phantom{1}(4)$: apply $(1)$
                    $phantom{1}(5)$: apply the Beta Function
                    $phantom{1}(6)$: sum in $n$
                    $phantom{1}(7)$: substitute $tmapsto t^2$
                    $phantom{1}(8)$: $1-t^2=2-left(1+t^2right)$
                    $phantom{1}(9)$: apply the Binomial Theorem
                    $(10)$: apply the Binomial Theorem and integrate
                    $(11)$: $binom{k}{j}=sumlimits_{m=1}^kbinom{k-m}{j-1}$ and substitute $jmapsto j+1$
                    $(12)$: reorder summation and $binom{k-m}{j}binom{j}{i}=binom{k-m}{i}binom{k-m-i}{j-i}$
                    $(13)$: substitute $jmapsto j+i$
                    $(14)$: apply the Binomial Theorem
                    $(15)$: shift factors of $2$
                    $(16)$: apply $(1)$
                    $(17)$: substitute $mmapsto k-m$
                    $(18)$: rewrite the Gamma functions as factorials



                    Thus,
                    $$
                    bbox[5px,border:2px solid #C0A000]{g(k)=-2^{k-1}sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}}tag{19}
                    $$





                    $(4)$ says that asymptotically, the full sum from the question is $frac12sqrt{fracpi{k}}$, which vanishes as $ktoinfty$. Thus, the sum in $(18)$ must converge quickly to $fracpi2$. In fact, the sum in $(18)$ is the partial sum of the sum in this question whose limit is $fracpi2$.






                    share|cite|improve this answer











                    $endgroup$



                    We will make use of the identity
                    $$
                    sum_{k=0}^n(-1)^kbinom{n}{k}frac1{k+alpha}=frac{n!,Gamma(alpha)}{Gamma(n+1+alpha)}tag1
                    $$

                    which can be proven by induction on $n$.





                    The sum in the question is
                    $$
                    begin{align}
                    &sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{2n+2j+1}tag2\
                    &=frac12sum_{n=0}^infty(-1)^nsum_{j=0}^kbinom{k}{j}frac{(-1)^j}{n+j+frac12}tag3\
                    &=frac12sum_{n=0}^infty(-1)^nfrac{k!,Gamma!left(n+frac12right)}{Gamma!left(n+k+frac32right)}tag4\
                    &=frac12sum_{n=0}^infty(-1)^nint_0^1(1-t)^kt^{n-frac12},mathrm{d}ttag5\
                    &=frac12int_0^1frac{(1-t)^k}{(1+t)sqrt{t}},mathrm{d}ttag6\
                    &=int_0^1frac{left(1-t^2right)^k}{1+t^2},mathrm{d}ttag7\
                    &=int_0^1frac{left(2-left(1+t^2right)right)^k}{1+t^2},mathrm{d}ttag8\
                    &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}int_0^1left(1+t^2right)^{j-1},mathrm{d}tright)tag9\
                    &=2^kleft(fracpi4+sum_{j=1}^kleft(-frac12right)^jbinom{k}{j}sum_{i=0}^{j-1}binom{j-1}{i}frac1{2i+1}right)tag{10}\
                    &=2^kleft(fracpi4-frac12sum_{j=0}^{k-1}left(-frac12right)^jsum_{m=1}^kbinom{k-m}{j}sum_{i=0}^{j}binom{j}{i}frac1{2i+1}right)tag{11}\
                    &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=i}^{k-m}left(-frac12right)^jbinom{k-m}{i}binom{k-m-i}{j-i}frac1{2i+1}right)tag{12}\
                    &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}sum_{j=0}^{k-m-i}left(-frac12right)^{j+i}binom{k-m}{i}binom{k-m-i}{j}frac1{2i+1}right)tag{13}\
                    &=2^kleft(fracpi4-frac12sum_{m=1}^ksum_{i=0}^{k-1}left(-frac12right)^ibinom{k-m}{i}left(frac12right)^{k-m-i}frac1{2i+1}right)tag{14}\
                    &=2^kleft(fracpi4-frac14sum_{m=1}^ksum_{i=0}^{k-m}(-1)^ibinom{k-m}{i}left(frac12right)^{k-m}frac1{i+frac12}right)tag{15}\
                    &=2^kleft(fracpi4-frac14sum_{m=1}^kleft(frac12right)^{k-m}frac{(k-m)!,Gamma!left(frac12right)}{Gamma!left(k-m+frac32right)}right)tag{16}\
                    &=2^kleft(fracpi4-frac14sum_{m=0}^{k-1}left(frac12right)^mfrac{m!,Gamma!left(frac12right)}{Gamma!left(m+frac32right)}right)tag{17}\
                    &=2^kleft(fracpi4-frac12sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}right)tag{18}\
                    end{align}
                    $$

                    Explanation:
                    $phantom{1}(3)$: bring $frac12$ out front
                    $phantom{1}(4)$: apply $(1)$
                    $phantom{1}(5)$: apply the Beta Function
                    $phantom{1}(6)$: sum in $n$
                    $phantom{1}(7)$: substitute $tmapsto t^2$
                    $phantom{1}(8)$: $1-t^2=2-left(1+t^2right)$
                    $phantom{1}(9)$: apply the Binomial Theorem
                    $(10)$: apply the Binomial Theorem and integrate
                    $(11)$: $binom{k}{j}=sumlimits_{m=1}^kbinom{k-m}{j-1}$ and substitute $jmapsto j+1$
                    $(12)$: reorder summation and $binom{k-m}{j}binom{j}{i}=binom{k-m}{i}binom{k-m-i}{j-i}$
                    $(13)$: substitute $jmapsto j+i$
                    $(14)$: apply the Binomial Theorem
                    $(15)$: shift factors of $2$
                    $(16)$: apply $(1)$
                    $(17)$: substitute $mmapsto k-m$
                    $(18)$: rewrite the Gamma functions as factorials



                    Thus,
                    $$
                    bbox[5px,border:2px solid #C0A000]{g(k)=-2^{k-1}sum_{m=0}^{k-1}frac{m!}{(2m+1)!!}}tag{19}
                    $$





                    $(4)$ says that asymptotically, the full sum from the question is $frac12sqrt{fracpi{k}}$, which vanishes as $ktoinfty$. Thus, the sum in $(18)$ must converge quickly to $fracpi2$. In fact, the sum in $(18)$ is the partial sum of the sum in this question whose limit is $fracpi2$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 2 at 2:47

























                    answered Jan 1 at 14:22









                    robjohnrobjohn

                    268k27308634




                    268k27308634























                        2












                        $begingroup$

                        Note that the partial fractions decomposition of the inverse
                        of the Rising Factorial gives:
                        $$
                        eqalign{
                        & left( {x - 1} right)^{,underline {, - left( {m + 1} right),} } = {1 over {x^{,overline {,m + 1,} } }}
                        = {{Gamma (x)} over {Gamma (x + m + 1)}} = ;quad left| {;0 le {rm integer }, m} right.quad = cr
                        & = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {left( {m - k} right)!k!}}} right)}
                        = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {m!}}binom{m}{k}
                        } right)} cr}
                        $$



                        So
                        $$
                        eqalign{
                        & sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                        {1 over {2n + 2j + 1}}} = cr
                        & = {1 over 2}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                        {1 over {left( {n + 1/2 + j} right)}}} = cr
                        & = {{k!} over {2left( {n + 1/2} right)^{,overline {,k + 1,} } }} cr}
                        $$



                        We have then that the sum in $n$ is



                        $$
                        eqalign{
                        & S(k) = sumlimits_{0, le ,n} {left( { - 1} right)^{,n} sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                        k cr
                        j cr} right){1 over {2n + 2j + 1}}} } = cr
                        & = {1 over 2}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{k!} over {left( {n + 1/2} right)^{,overline {,k + 1,} } }}} = cr
                        & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,k + 1,} } }
                        over {left( {1 + n - 1/2} right)^{,overline {,k + 1,} } }}} = cr
                        & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,n - 1/2,} } }
                        over {left( {2 + k} right)^{,overline {,n - 1/2,} } }}} = cr
                        & = {{1^{,overline {, - 1/2,} } } over {2left( {k + 1} right)left( {2 + k} right)^{,overline {, - 1/2,} } }}
                        sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                        & = {{Gamma left( {1/2} right)Gamma left( {2 + k} right)} over {2left( {k + 1} right)Gamma left( 1 right)Gamma left( {3/2 + k} right) }}
                        sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                        & = {{Gamma left( {1/2} right)Gamma left( {1 + k} right)} over {2,Gamma left( {3/2 + k} right)}}{}_2F_{,1} left( {left. {matrix{
                        {1/2;,;1} cr
                        {k + 3/2} cr
                        } ;} right| - 1} right) = cr
                        & = 2^{,2,k} {{left( {k!} right)^{,2} } over {left( {2k + 1} right)!}};;{}_2F_{,1} left( {left. {matrix{
                        {1/2;,;1} cr
                        {k + 3/2} cr
                        } ;} right| - 1} right) cr}
                        $$



                        where in the mid of the derivation we have used the identity
                        $$
                        {{z^{,overline {,w,} } } over {left( {z + a} right)^{,overline {,w,} } }} = {{z^{,overline {,a,} } } over {left( {z + w} right)^{,overline {,a,} } }}
                        $$

                        and at the end the duplication formula for Gamma
                        $$
                        Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right) = 2^{,2,z - 1} {{Gamma left( z right)Gamma left( {z + 1/2} right)} over {Gamma left( {1/2} right)}}
                        $$



                        Alternative Approach



                        Actually there is a more straight alternative aproach through the Digamma Function
                        $$
                        eqalign{
                        & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                        k cr
                        j cr} right)sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                        & = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                        k cr
                        j cr} right)sumlimits_{0, le ,m} {left( {{1 over {4m + 2j + 1}} - {1 over {4m + 2j + 3}}} right)} } = cr
                        & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                        k cr
                        j cr} right)sumlimits_{0, le ,m} {left( {{1 over {m + j/2 + 1/4}} - {1 over {m + j/2 + 3/4}}} right)} } = cr
                        & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                        k cr
                        j cr} right)left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                        & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                        k cr
                        2j cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                        k cr
                        2j + 1 cr} right)left( {psi left( {j + 5/4} right) - psi left( {j + 3/4} right)} right)} = cr
                        & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                        k + 1 cr
                        2j + 1 cr} right)psi left( {j + 3/4} right) - left( matrix{
                        k cr
                        2j cr} right)psi left( {j + 1/4} right) - left( matrix{
                        k cr
                        2j + 1 cr} right)psi left( {j + 1 + 1/4} right)} = cr
                        & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                        k + 1 cr
                        2j + 1 cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                        k cr
                        2j + 1 cr} right){1 over {j + 1/4}}} cr}
                        $$



                        Since we can write (re. for instance to this page)
                        $$
                        eqalign{
                        & psi left( {j + 3/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 3}}} + {pi over 2} - ln 8 - gamma
                        = psi left( {j + 3/4} right) - left( {psi left( {3/4} right) - left( {{pi over 2} - ln 8 - gamma } right)} right) cr
                        & psi left( {j + 1/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 1}}} - {pi over 2} - ln 8 - gamma
                        = psi left( {j + 1/4} right) - left( {psi left( {1/4} right) - left( { - {pi over 2} - ln 8 - gamma } right)} right) cr}
                        $$

                        we arrive to express the sum as
                        $$
                        eqalign{
                        & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                        sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                        & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                        left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                        & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                        left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 3} right)left( {4,l + 1} right)}}} } right)}
                        - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} = cr
                        & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                        left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 2} right)^{,2} - 1}}} } right)}
                        - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} cr}
                        $$



                        Interesting the comparison of this expression with the one given by
                        @robjohn






                        share|cite|improve this answer











                        $endgroup$


















                          2












                          $begingroup$

                          Note that the partial fractions decomposition of the inverse
                          of the Rising Factorial gives:
                          $$
                          eqalign{
                          & left( {x - 1} right)^{,underline {, - left( {m + 1} right),} } = {1 over {x^{,overline {,m + 1,} } }}
                          = {{Gamma (x)} over {Gamma (x + m + 1)}} = ;quad left| {;0 le {rm integer }, m} right.quad = cr
                          & = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {left( {m - k} right)!k!}}} right)}
                          = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {m!}}binom{m}{k}
                          } right)} cr}
                          $$



                          So
                          $$
                          eqalign{
                          & sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                          {1 over {2n + 2j + 1}}} = cr
                          & = {1 over 2}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                          {1 over {left( {n + 1/2 + j} right)}}} = cr
                          & = {{k!} over {2left( {n + 1/2} right)^{,overline {,k + 1,} } }} cr}
                          $$



                          We have then that the sum in $n$ is



                          $$
                          eqalign{
                          & S(k) = sumlimits_{0, le ,n} {left( { - 1} right)^{,n} sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                          k cr
                          j cr} right){1 over {2n + 2j + 1}}} } = cr
                          & = {1 over 2}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{k!} over {left( {n + 1/2} right)^{,overline {,k + 1,} } }}} = cr
                          & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,k + 1,} } }
                          over {left( {1 + n - 1/2} right)^{,overline {,k + 1,} } }}} = cr
                          & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,n - 1/2,} } }
                          over {left( {2 + k} right)^{,overline {,n - 1/2,} } }}} = cr
                          & = {{1^{,overline {, - 1/2,} } } over {2left( {k + 1} right)left( {2 + k} right)^{,overline {, - 1/2,} } }}
                          sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                          & = {{Gamma left( {1/2} right)Gamma left( {2 + k} right)} over {2left( {k + 1} right)Gamma left( 1 right)Gamma left( {3/2 + k} right) }}
                          sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                          & = {{Gamma left( {1/2} right)Gamma left( {1 + k} right)} over {2,Gamma left( {3/2 + k} right)}}{}_2F_{,1} left( {left. {matrix{
                          {1/2;,;1} cr
                          {k + 3/2} cr
                          } ;} right| - 1} right) = cr
                          & = 2^{,2,k} {{left( {k!} right)^{,2} } over {left( {2k + 1} right)!}};;{}_2F_{,1} left( {left. {matrix{
                          {1/2;,;1} cr
                          {k + 3/2} cr
                          } ;} right| - 1} right) cr}
                          $$



                          where in the mid of the derivation we have used the identity
                          $$
                          {{z^{,overline {,w,} } } over {left( {z + a} right)^{,overline {,w,} } }} = {{z^{,overline {,a,} } } over {left( {z + w} right)^{,overline {,a,} } }}
                          $$

                          and at the end the duplication formula for Gamma
                          $$
                          Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right) = 2^{,2,z - 1} {{Gamma left( z right)Gamma left( {z + 1/2} right)} over {Gamma left( {1/2} right)}}
                          $$



                          Alternative Approach



                          Actually there is a more straight alternative aproach through the Digamma Function
                          $$
                          eqalign{
                          & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                          k cr
                          j cr} right)sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                          & = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                          k cr
                          j cr} right)sumlimits_{0, le ,m} {left( {{1 over {4m + 2j + 1}} - {1 over {4m + 2j + 3}}} right)} } = cr
                          & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                          k cr
                          j cr} right)sumlimits_{0, le ,m} {left( {{1 over {m + j/2 + 1/4}} - {1 over {m + j/2 + 3/4}}} right)} } = cr
                          & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                          k cr
                          j cr} right)left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                          & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                          k cr
                          2j cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                          k cr
                          2j + 1 cr} right)left( {psi left( {j + 5/4} right) - psi left( {j + 3/4} right)} right)} = cr
                          & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                          k + 1 cr
                          2j + 1 cr} right)psi left( {j + 3/4} right) - left( matrix{
                          k cr
                          2j cr} right)psi left( {j + 1/4} right) - left( matrix{
                          k cr
                          2j + 1 cr} right)psi left( {j + 1 + 1/4} right)} = cr
                          & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                          k + 1 cr
                          2j + 1 cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                          k cr
                          2j + 1 cr} right){1 over {j + 1/4}}} cr}
                          $$



                          Since we can write (re. for instance to this page)
                          $$
                          eqalign{
                          & psi left( {j + 3/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 3}}} + {pi over 2} - ln 8 - gamma
                          = psi left( {j + 3/4} right) - left( {psi left( {3/4} right) - left( {{pi over 2} - ln 8 - gamma } right)} right) cr
                          & psi left( {j + 1/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 1}}} - {pi over 2} - ln 8 - gamma
                          = psi left( {j + 1/4} right) - left( {psi left( {1/4} right) - left( { - {pi over 2} - ln 8 - gamma } right)} right) cr}
                          $$

                          we arrive to express the sum as
                          $$
                          eqalign{
                          & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                          sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                          & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                          left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                          & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                          left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 3} right)left( {4,l + 1} right)}}} } right)}
                          - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} = cr
                          & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                          left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 2} right)^{,2} - 1}}} } right)}
                          - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} cr}
                          $$



                          Interesting the comparison of this expression with the one given by
                          @robjohn






                          share|cite|improve this answer











                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            Note that the partial fractions decomposition of the inverse
                            of the Rising Factorial gives:
                            $$
                            eqalign{
                            & left( {x - 1} right)^{,underline {, - left( {m + 1} right),} } = {1 over {x^{,overline {,m + 1,} } }}
                            = {{Gamma (x)} over {Gamma (x + m + 1)}} = ;quad left| {;0 le {rm integer }, m} right.quad = cr
                            & = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {left( {m - k} right)!k!}}} right)}
                            = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {m!}}binom{m}{k}
                            } right)} cr}
                            $$



                            So
                            $$
                            eqalign{
                            & sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            {1 over {2n + 2j + 1}}} = cr
                            & = {1 over 2}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            {1 over {left( {n + 1/2 + j} right)}}} = cr
                            & = {{k!} over {2left( {n + 1/2} right)^{,overline {,k + 1,} } }} cr}
                            $$



                            We have then that the sum in $n$ is



                            $$
                            eqalign{
                            & S(k) = sumlimits_{0, le ,n} {left( { - 1} right)^{,n} sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right){1 over {2n + 2j + 1}}} } = cr
                            & = {1 over 2}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{k!} over {left( {n + 1/2} right)^{,overline {,k + 1,} } }}} = cr
                            & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,k + 1,} } }
                            over {left( {1 + n - 1/2} right)^{,overline {,k + 1,} } }}} = cr
                            & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,n - 1/2,} } }
                            over {left( {2 + k} right)^{,overline {,n - 1/2,} } }}} = cr
                            & = {{1^{,overline {, - 1/2,} } } over {2left( {k + 1} right)left( {2 + k} right)^{,overline {, - 1/2,} } }}
                            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                            & = {{Gamma left( {1/2} right)Gamma left( {2 + k} right)} over {2left( {k + 1} right)Gamma left( 1 right)Gamma left( {3/2 + k} right) }}
                            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                            & = {{Gamma left( {1/2} right)Gamma left( {1 + k} right)} over {2,Gamma left( {3/2 + k} right)}}{}_2F_{,1} left( {left. {matrix{
                            {1/2;,;1} cr
                            {k + 3/2} cr
                            } ;} right| - 1} right) = cr
                            & = 2^{,2,k} {{left( {k!} right)^{,2} } over {left( {2k + 1} right)!}};;{}_2F_{,1} left( {left. {matrix{
                            {1/2;,;1} cr
                            {k + 3/2} cr
                            } ;} right| - 1} right) cr}
                            $$



                            where in the mid of the derivation we have used the identity
                            $$
                            {{z^{,overline {,w,} } } over {left( {z + a} right)^{,overline {,w,} } }} = {{z^{,overline {,a,} } } over {left( {z + w} right)^{,overline {,a,} } }}
                            $$

                            and at the end the duplication formula for Gamma
                            $$
                            Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right) = 2^{,2,z - 1} {{Gamma left( z right)Gamma left( {z + 1/2} right)} over {Gamma left( {1/2} right)}}
                            $$



                            Alternative Approach



                            Actually there is a more straight alternative aproach through the Digamma Function
                            $$
                            eqalign{
                            & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                            & = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)sumlimits_{0, le ,m} {left( {{1 over {4m + 2j + 1}} - {1 over {4m + 2j + 3}}} right)} } = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)sumlimits_{0, le ,m} {left( {{1 over {m + j/2 + 1/4}} - {1 over {m + j/2 + 3/4}}} right)} } = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                            k cr
                            2j cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                            k cr
                            2j + 1 cr} right)left( {psi left( {j + 5/4} right) - psi left( {j + 3/4} right)} right)} = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                            k + 1 cr
                            2j + 1 cr} right)psi left( {j + 3/4} right) - left( matrix{
                            k cr
                            2j cr} right)psi left( {j + 1/4} right) - left( matrix{
                            k cr
                            2j + 1 cr} right)psi left( {j + 1 + 1/4} right)} = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                            k + 1 cr
                            2j + 1 cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                            k cr
                            2j + 1 cr} right){1 over {j + 1/4}}} cr}
                            $$



                            Since we can write (re. for instance to this page)
                            $$
                            eqalign{
                            & psi left( {j + 3/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 3}}} + {pi over 2} - ln 8 - gamma
                            = psi left( {j + 3/4} right) - left( {psi left( {3/4} right) - left( {{pi over 2} - ln 8 - gamma } right)} right) cr
                            & psi left( {j + 1/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 1}}} - {pi over 2} - ln 8 - gamma
                            = psi left( {j + 1/4} right) - left( {psi left( {1/4} right) - left( { - {pi over 2} - ln 8 - gamma } right)} right) cr}
                            $$

                            we arrive to express the sum as
                            $$
                            eqalign{
                            & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                            & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                            left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 3} right)left( {4,l + 1} right)}}} } right)}
                            - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} = cr
                            & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                            left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 2} right)^{,2} - 1}}} } right)}
                            - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} cr}
                            $$



                            Interesting the comparison of this expression with the one given by
                            @robjohn






                            share|cite|improve this answer











                            $endgroup$



                            Note that the partial fractions decomposition of the inverse
                            of the Rising Factorial gives:
                            $$
                            eqalign{
                            & left( {x - 1} right)^{,underline {, - left( {m + 1} right),} } = {1 over {x^{,overline {,m + 1,} } }}
                            = {{Gamma (x)} over {Gamma (x + m + 1)}} = ;quad left| {;0 le {rm integer }, m} right.quad = cr
                            & = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {left( {m - k} right)!k!}}} right)}
                            = sumlimits_{0, le ,k, le ,m} {{1 over {x + k}}left( {{{left( { - 1} right)^{,k} } over {m!}}binom{m}{k}
                            } right)} cr}
                            $$



                            So
                            $$
                            eqalign{
                            & sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            {1 over {2n + 2j + 1}}} = cr
                            & = {1 over 2}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            {1 over {left( {n + 1/2 + j} right)}}} = cr
                            & = {{k!} over {2left( {n + 1/2} right)^{,overline {,k + 1,} } }} cr}
                            $$



                            We have then that the sum in $n$ is



                            $$
                            eqalign{
                            & S(k) = sumlimits_{0, le ,n} {left( { - 1} right)^{,n} sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right){1 over {2n + 2j + 1}}} } = cr
                            & = {1 over 2}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{k!} over {left( {n + 1/2} right)^{,overline {,k + 1,} } }}} = cr
                            & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,k + 1,} } }
                            over {left( {1 + n - 1/2} right)^{,overline {,k + 1,} } }}} = cr
                            & = {1 over {2left( {k + 1} right)}}sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{1^{,overline {,n - 1/2,} } }
                            over {left( {2 + k} right)^{,overline {,n - 1/2,} } }}} = cr
                            & = {{1^{,overline {, - 1/2,} } } over {2left( {k + 1} right)left( {2 + k} right)^{,overline {, - 1/2,} } }}
                            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                            & = {{Gamma left( {1/2} right)Gamma left( {2 + k} right)} over {2left( {k + 1} right)Gamma left( 1 right)Gamma left( {3/2 + k} right) }}
                            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {{left( {1/2} right)^{,overline {,n,} } } over {left( {3/2 + k} right)^{,overline {,n,} } }}} = cr
                            & = {{Gamma left( {1/2} right)Gamma left( {1 + k} right)} over {2,Gamma left( {3/2 + k} right)}}{}_2F_{,1} left( {left. {matrix{
                            {1/2;,;1} cr
                            {k + 3/2} cr
                            } ;} right| - 1} right) = cr
                            & = 2^{,2,k} {{left( {k!} right)^{,2} } over {left( {2k + 1} right)!}};;{}_2F_{,1} left( {left. {matrix{
                            {1/2;,;1} cr
                            {k + 3/2} cr
                            } ;} right| - 1} right) cr}
                            $$



                            where in the mid of the derivation we have used the identity
                            $$
                            {{z^{,overline {,w,} } } over {left( {z + a} right)^{,overline {,w,} } }} = {{z^{,overline {,a,} } } over {left( {z + w} right)^{,overline {,a,} } }}
                            $$

                            and at the end the duplication formula for Gamma
                            $$
                            Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right) = 2^{,2,z - 1} {{Gamma left( z right)Gamma left( {z + 1/2} right)} over {Gamma left( {1/2} right)}}
                            $$



                            Alternative Approach



                            Actually there is a more straight alternative aproach through the Digamma Function
                            $$
                            eqalign{
                            & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                            & = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)sumlimits_{0, le ,m} {left( {{1 over {4m + 2j + 1}} - {1 over {4m + 2j + 3}}} right)} } = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)sumlimits_{0, le ,m} {left( {{1 over {m + j/2 + 1/4}} - {1 over {m + j/2 + 3/4}}} right)} } = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} left( matrix{
                            k cr
                            j cr} right)left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                            k cr
                            2j cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                            k cr
                            2j + 1 cr} right)left( {psi left( {j + 5/4} right) - psi left( {j + 3/4} right)} right)} = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                            k + 1 cr
                            2j + 1 cr} right)psi left( {j + 3/4} right) - left( matrix{
                            k cr
                            2j cr} right)psi left( {j + 1/4} right) - left( matrix{
                            k cr
                            2j + 1 cr} right)psi left( {j + 1 + 1/4} right)} = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,} {left( matrix{
                            k + 1 cr
                            2j + 1 cr} right)left( {psi left( {j + 3/4} right) - psi left( {j + 1/4} right)} right) - left( matrix{
                            k cr
                            2j + 1 cr} right){1 over {j + 1/4}}} cr}
                            $$



                            Since we can write (re. for instance to this page)
                            $$
                            eqalign{
                            & psi left( {j + 3/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 3}}} + {pi over 2} - ln 8 - gamma
                            = psi left( {j + 3/4} right) - left( {psi left( {3/4} right) - left( {{pi over 2} - ln 8 - gamma } right)} right) cr
                            & psi left( {j + 1/4} right) = 4sumlimits_{0, le ,l, le ,j - 1,} {{1 over {4,l + 1}}} - {pi over 2} - ln 8 - gamma
                            = psi left( {j + 1/4} right) - left( {psi left( {1/4} right) - left( { - {pi over 2} - ln 8 - gamma } right)} right) cr}
                            $$

                            we arrive to express the sum as
                            $$
                            eqalign{
                            & S(k) = sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            sumlimits_{0, le ,n} {left( { - 1} right)^{,n} {1 over {2n + 2j + 1}}} } = cr
                            & = {1 over 4}sumlimits_{left( {0, le } right),j,left( { le ,k} right)} {left( { - 1} right)^{,j} binom{k}{j}
                            left( {psi left( {j/2 + 3/4} right) - psi left( {j/2 + 1/4} right)} right)} = cr
                            & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                            left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 3} right)left( {4,l + 1} right)}}} } right)}
                            - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} = cr
                            & = {pi over 4}2^{,k} - 2sumlimits_{left( {0, le } right),j,left( { le ,k} right),} {binom{k+1}{2j+1}
                            left( {sumlimits_{0, le ,l, le ,j - 1,} {{1 over {left( {4,l + 2} right)^{,2} - 1}}} } right)}
                            - sumlimits_{left( {0, le } right),j,left( { le ,left( {k - 1} right)/2} right),} {binom{k}{2j+1}{1 over {4j + 1}}} cr}
                            $$



                            Interesting the comparison of this expression with the one given by
                            @robjohn







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 3 at 11:57

























                            answered Jan 1 at 17:31









                            G CabG Cab

                            19.7k31339




                            19.7k31339























                                1












                                $begingroup$

                                (2) is
                                $$frac11-frac23+frac25-frac27+cdots=-1+2left(frac11-frac13+frac15-cdotsright),$$
                                (3) is
                                $$frac11-frac33+frac45-frac47+cdots=-3+frac13+4left(frac11-frac13+frac15-cdotsright),$$
                                (4) is
                                $$frac11-frac43+frac75-frac87+cdots=-7+frac43-frac15+8left(frac11-frac13+frac15-cdotsright),$$
                                etc.



                                In general, one gets
                                $$2^kfracpi4-sum_{j=0}^{k-1}(-1)^jfrac1{2j+1}
                                left(2^k-sum_{i=0}^j{kchoose i}right).$$






                                share|cite|improve this answer











                                $endgroup$


















                                  1












                                  $begingroup$

                                  (2) is
                                  $$frac11-frac23+frac25-frac27+cdots=-1+2left(frac11-frac13+frac15-cdotsright),$$
                                  (3) is
                                  $$frac11-frac33+frac45-frac47+cdots=-3+frac13+4left(frac11-frac13+frac15-cdotsright),$$
                                  (4) is
                                  $$frac11-frac43+frac75-frac87+cdots=-7+frac43-frac15+8left(frac11-frac13+frac15-cdotsright),$$
                                  etc.



                                  In general, one gets
                                  $$2^kfracpi4-sum_{j=0}^{k-1}(-1)^jfrac1{2j+1}
                                  left(2^k-sum_{i=0}^j{kchoose i}right).$$






                                  share|cite|improve this answer











                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    (2) is
                                    $$frac11-frac23+frac25-frac27+cdots=-1+2left(frac11-frac13+frac15-cdotsright),$$
                                    (3) is
                                    $$frac11-frac33+frac45-frac47+cdots=-3+frac13+4left(frac11-frac13+frac15-cdotsright),$$
                                    (4) is
                                    $$frac11-frac43+frac75-frac87+cdots=-7+frac43-frac15+8left(frac11-frac13+frac15-cdotsright),$$
                                    etc.



                                    In general, one gets
                                    $$2^kfracpi4-sum_{j=0}^{k-1}(-1)^jfrac1{2j+1}
                                    left(2^k-sum_{i=0}^j{kchoose i}right).$$






                                    share|cite|improve this answer











                                    $endgroup$



                                    (2) is
                                    $$frac11-frac23+frac25-frac27+cdots=-1+2left(frac11-frac13+frac15-cdotsright),$$
                                    (3) is
                                    $$frac11-frac33+frac45-frac47+cdots=-3+frac13+4left(frac11-frac13+frac15-cdotsright),$$
                                    (4) is
                                    $$frac11-frac43+frac75-frac87+cdots=-7+frac43-frac15+8left(frac11-frac13+frac15-cdotsright),$$
                                    etc.



                                    In general, one gets
                                    $$2^kfracpi4-sum_{j=0}^{k-1}(-1)^jfrac1{2j+1}
                                    left(2^k-sum_{i=0}^j{kchoose i}right).$$







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Dec 31 '18 at 16:44

























                                    answered Dec 31 '18 at 16:38









                                    Lord Shark the UnknownLord Shark the Unknown

                                    105k1160133




                                    105k1160133






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057853%2fevaluate-sum-limits-n-0-infty-1n-sum-limits-j-0kk-choose-j-fra%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Ellipse (mathématiques)

                                        Quarter-circle Tiles

                                        Mont Emei