Is $sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m...












4












$begingroup$


I would like to ask whether the expression



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}}$$



is finite?



Intuitively, this should be the case as away from the diagonal $n=m$ the exponential is rapidly decaying and on the diagonal, this expression is summable, but I cannot make it rigorous.



EDIT: The sum is over $n$ and $m$ both in $mathbb Z^2.$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Can we please clarify: Do you mean that each of $n$ and $m$ is a vector in $mathbb Z^2$? Or do you mean $(n ,m) in mathbb Z^2$?
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:01












  • $begingroup$
    sorry, it is indeed that both $n$ amd $m$ are in $mathbb Z^2.$
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:04










  • $begingroup$
    okay, I'll delete my ealier answer.
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:04
















4












$begingroup$


I would like to ask whether the expression



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}}$$



is finite?



Intuitively, this should be the case as away from the diagonal $n=m$ the exponential is rapidly decaying and on the diagonal, this expression is summable, but I cannot make it rigorous.



EDIT: The sum is over $n$ and $m$ both in $mathbb Z^2.$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Can we please clarify: Do you mean that each of $n$ and $m$ is a vector in $mathbb Z^2$? Or do you mean $(n ,m) in mathbb Z^2$?
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:01












  • $begingroup$
    sorry, it is indeed that both $n$ amd $m$ are in $mathbb Z^2.$
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:04










  • $begingroup$
    okay, I'll delete my ealier answer.
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:04














4












4








4


0



$begingroup$


I would like to ask whether the expression



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}}$$



is finite?



Intuitively, this should be the case as away from the diagonal $n=m$ the exponential is rapidly decaying and on the diagonal, this expression is summable, but I cannot make it rigorous.



EDIT: The sum is over $n$ and $m$ both in $mathbb Z^2.$










share|cite|improve this question











$endgroup$




I would like to ask whether the expression



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}}$$



is finite?



Intuitively, this should be the case as away from the diagonal $n=m$ the exponential is rapidly decaying and on the diagonal, this expression is summable, but I cannot make it rigorous.



EDIT: The sum is over $n$ and $m$ both in $mathbb Z^2.$







real-analysis calculus sequences-and-series analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 19:12







Sascha

















asked Dec 31 '18 at 18:22









SaschaSascha

136318




136318












  • $begingroup$
    Can we please clarify: Do you mean that each of $n$ and $m$ is a vector in $mathbb Z^2$? Or do you mean $(n ,m) in mathbb Z^2$?
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:01












  • $begingroup$
    sorry, it is indeed that both $n$ amd $m$ are in $mathbb Z^2.$
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:04










  • $begingroup$
    okay, I'll delete my ealier answer.
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:04


















  • $begingroup$
    Can we please clarify: Do you mean that each of $n$ and $m$ is a vector in $mathbb Z^2$? Or do you mean $(n ,m) in mathbb Z^2$?
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:01












  • $begingroup$
    sorry, it is indeed that both $n$ amd $m$ are in $mathbb Z^2.$
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:04










  • $begingroup$
    okay, I'll delete my ealier answer.
    $endgroup$
    – Kenny Wong
    Dec 31 '18 at 19:04
















$begingroup$
Can we please clarify: Do you mean that each of $n$ and $m$ is a vector in $mathbb Z^2$? Or do you mean $(n ,m) in mathbb Z^2$?
$endgroup$
– Kenny Wong
Dec 31 '18 at 19:01






$begingroup$
Can we please clarify: Do you mean that each of $n$ and $m$ is a vector in $mathbb Z^2$? Or do you mean $(n ,m) in mathbb Z^2$?
$endgroup$
– Kenny Wong
Dec 31 '18 at 19:01














$begingroup$
sorry, it is indeed that both $n$ amd $m$ are in $mathbb Z^2.$
$endgroup$
– Sascha
Dec 31 '18 at 19:04




$begingroup$
sorry, it is indeed that both $n$ amd $m$ are in $mathbb Z^2.$
$endgroup$
– Sascha
Dec 31 '18 at 19:04












$begingroup$
okay, I'll delete my ealier answer.
$endgroup$
– Kenny Wong
Dec 31 '18 at 19:04




$begingroup$
okay, I'll delete my ealier answer.
$endgroup$
– Kenny Wong
Dec 31 '18 at 19:04










1 Answer
1






active

oldest

votes


















3












$begingroup$

Note first that everything is positive.



Then



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} stackrel{m-n=k}{===}sum_{k in mathbb Z^2}sum_{m in mathbb Z^2} e^{-Vert k Vert} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} \stackrel{m-n=k}{===}sum_{k in mathbb Z^2}e^{-Vert k Vert} sum_{m in mathbb Z^2} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} $$



Now, for each $k in mathbb Z^2$ you have by Cauchy- Schwartz (you have to prove this step by looking at the partial sums)



$$left(sum_{m in mathbb Z^2} frac{1}{1+Vert m Vert^{1+varepsilon}} frac{1}{1+Vert m+k Vert^{1+varepsilon}} right)^2 leq left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)left( sum_{m in mathbb Z^2} frac{1}{(1+Vert m+kVert^{1+varepsilon})^2} right)\=left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)^2 $$



Now, it is easy to argue that
$$C:= left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)< infty$$



Therefore,
$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} leq sum_{k in mathbb Z^2}e^{-Vert k Vert} cdot C <infty $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you very much for your help, it is a wonderful answer.
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:48











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057932%2fis-sum-n-m-in-mathbb-z2-e-vert-n-m-vert-frac11-vert-n-vert1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Note first that everything is positive.



Then



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} stackrel{m-n=k}{===}sum_{k in mathbb Z^2}sum_{m in mathbb Z^2} e^{-Vert k Vert} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} \stackrel{m-n=k}{===}sum_{k in mathbb Z^2}e^{-Vert k Vert} sum_{m in mathbb Z^2} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} $$



Now, for each $k in mathbb Z^2$ you have by Cauchy- Schwartz (you have to prove this step by looking at the partial sums)



$$left(sum_{m in mathbb Z^2} frac{1}{1+Vert m Vert^{1+varepsilon}} frac{1}{1+Vert m+k Vert^{1+varepsilon}} right)^2 leq left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)left( sum_{m in mathbb Z^2} frac{1}{(1+Vert m+kVert^{1+varepsilon})^2} right)\=left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)^2 $$



Now, it is easy to argue that
$$C:= left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)< infty$$



Therefore,
$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} leq sum_{k in mathbb Z^2}e^{-Vert k Vert} cdot C <infty $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you very much for your help, it is a wonderful answer.
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:48
















3












$begingroup$

Note first that everything is positive.



Then



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} stackrel{m-n=k}{===}sum_{k in mathbb Z^2}sum_{m in mathbb Z^2} e^{-Vert k Vert} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} \stackrel{m-n=k}{===}sum_{k in mathbb Z^2}e^{-Vert k Vert} sum_{m in mathbb Z^2} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} $$



Now, for each $k in mathbb Z^2$ you have by Cauchy- Schwartz (you have to prove this step by looking at the partial sums)



$$left(sum_{m in mathbb Z^2} frac{1}{1+Vert m Vert^{1+varepsilon}} frac{1}{1+Vert m+k Vert^{1+varepsilon}} right)^2 leq left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)left( sum_{m in mathbb Z^2} frac{1}{(1+Vert m+kVert^{1+varepsilon})^2} right)\=left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)^2 $$



Now, it is easy to argue that
$$C:= left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)< infty$$



Therefore,
$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} leq sum_{k in mathbb Z^2}e^{-Vert k Vert} cdot C <infty $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you very much for your help, it is a wonderful answer.
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:48














3












3








3





$begingroup$

Note first that everything is positive.



Then



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} stackrel{m-n=k}{===}sum_{k in mathbb Z^2}sum_{m in mathbb Z^2} e^{-Vert k Vert} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} \stackrel{m-n=k}{===}sum_{k in mathbb Z^2}e^{-Vert k Vert} sum_{m in mathbb Z^2} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} $$



Now, for each $k in mathbb Z^2$ you have by Cauchy- Schwartz (you have to prove this step by looking at the partial sums)



$$left(sum_{m in mathbb Z^2} frac{1}{1+Vert m Vert^{1+varepsilon}} frac{1}{1+Vert m+k Vert^{1+varepsilon}} right)^2 leq left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)left( sum_{m in mathbb Z^2} frac{1}{(1+Vert m+kVert^{1+varepsilon})^2} right)\=left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)^2 $$



Now, it is easy to argue that
$$C:= left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)< infty$$



Therefore,
$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} leq sum_{k in mathbb Z^2}e^{-Vert k Vert} cdot C <infty $$






share|cite|improve this answer









$endgroup$



Note first that everything is positive.



Then



$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} stackrel{m-n=k}{===}sum_{k in mathbb Z^2}sum_{m in mathbb Z^2} e^{-Vert k Vert} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} \stackrel{m-n=k}{===}sum_{k in mathbb Z^2}e^{-Vert k Vert} sum_{m in mathbb Z^2} frac{1}{1+Vert m+k Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} $$



Now, for each $k in mathbb Z^2$ you have by Cauchy- Schwartz (you have to prove this step by looking at the partial sums)



$$left(sum_{m in mathbb Z^2} frac{1}{1+Vert m Vert^{1+varepsilon}} frac{1}{1+Vert m+k Vert^{1+varepsilon}} right)^2 leq left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)left( sum_{m in mathbb Z^2} frac{1}{(1+Vert m+kVert^{1+varepsilon})^2} right)\=left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)^2 $$



Now, it is easy to argue that
$$C:= left( sum_{m in mathbb Z^2} frac{1}{(1+Vert mVert^{1+varepsilon})^2} right)< infty$$



Therefore,
$$sum_{n,m in mathbb Z^2} e^{-Vert n-m Vert} frac{1}{1+Vert n Vert^{1+varepsilon}} frac{1}{1+Vert m Vert^{1+varepsilon}} leq sum_{k in mathbb Z^2}e^{-Vert k Vert} cdot C <infty $$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 31 '18 at 19:35









N. S.N. S.

104k7114209




104k7114209












  • $begingroup$
    thank you very much for your help, it is a wonderful answer.
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:48


















  • $begingroup$
    thank you very much for your help, it is a wonderful answer.
    $endgroup$
    – Sascha
    Dec 31 '18 at 19:48
















$begingroup$
thank you very much for your help, it is a wonderful answer.
$endgroup$
– Sascha
Dec 31 '18 at 19:48




$begingroup$
thank you very much for your help, it is a wonderful answer.
$endgroup$
– Sascha
Dec 31 '18 at 19:48


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057932%2fis-sum-n-m-in-mathbb-z2-e-vert-n-m-vert-frac11-vert-n-vert1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei