Contour Integral over Heaviside Function












1












$begingroup$


I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression



$$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$



Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:



$$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$



Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.



The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression



    $$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$



    Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:



    $$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$



    Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.



    The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression



      $$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$



      Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:



      $$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$



      Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.



      The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!










      share|cite|improve this question









      $endgroup$




      I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression



      $$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$



      Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:



      $$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$



      Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.



      The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!







      contour-integration greens-function step-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 2 at 23:13









      SKBSKB

      62




      62






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060086%2fcontour-integral-over-heaviside-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060086%2fcontour-integral-over-heaviside-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei