Contour Integral over Heaviside Function
$begingroup$
I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression
$$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$
Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:
$$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$
Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.
The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!
contour-integration greens-function step-function
$endgroup$
add a comment |
$begingroup$
I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression
$$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$
Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:
$$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$
Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.
The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!
contour-integration greens-function step-function
$endgroup$
add a comment |
$begingroup$
I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression
$$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$
Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:
$$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$
Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.
The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!
contour-integration greens-function step-function
$endgroup$
I am stuck on how to do a problem where I am deriving the Green's function for a nuclear scattering system. I am currently starting with the expression
$$G^+(mathbf{0})=frac{2m}{(2pi)^2}int dmathbf{p} frac{Theta(Lambda^2-mathbf{p}^2)}{mathbf{p}^2-mathbf{k}^2-iepsilon}$$
Where the heaviside function is introduced as a cut-off parameter. I started by evaluating the contour where the poles are located at $mathbf{p}=pm(mathbf{k}-iepsilon)$. I factored the denominator, but I am stuck on how to evaluate the residue given the Heaviside function in the argument:
$$Res{G^+(mathbf{0})}=lim_{pto p^+}({mathbf{p}-mathbf{k}-iepsilon})frac{Theta(Lambda^2-mathbf{p}^2)}{(mathbf{p}-mathbf{k}-iepsilon)(mathbf{p}+mathbf{k}-iepsilon)}=frac{Theta(Lambda^2-mathbf{p}^2)}{2mathbf{k}-2iepsilon}$$
Where the $2iepsilon$ term will go to zero after taking the limit $epsilonrightarrow0$.
The answer involves a $log(frac{Lambda^2}{-mathbf{k}^2})$, which confuses me more as to how I should evaluate this integral. Any help is appreciated!
contour-integration greens-function step-function
contour-integration greens-function step-function
asked Jan 2 at 23:13
SKBSKB
62
62
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060086%2fcontour-integral-over-heaviside-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060086%2fcontour-integral-over-heaviside-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown