Direct mapping and inverse mapping: when they can be equal?












0












$begingroup$


I read the following phrase from a textbook




Bijection $ f : M rightarrow M$ known as symmetry if $ f^{-1} = f$.




I am curious, are there any examples of $ f^{-1} = f$ outside of identity relation - $ id_X $ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    any sort of transposition will do. For example, let f($x_1,x_2,x_3$) = ($x_3,x_2,x_1$).
    $endgroup$
    – Joel Pereira
    Jan 2 at 23:42






  • 1




    $begingroup$
    $-x$ on $mathbb R$, $frac 1 x$ on $(0,infty)$. How many millions do you want?
    $endgroup$
    – Kavi Rama Murthy
    Jan 3 at 0:05
















0












$begingroup$


I read the following phrase from a textbook




Bijection $ f : M rightarrow M$ known as symmetry if $ f^{-1} = f$.




I am curious, are there any examples of $ f^{-1} = f$ outside of identity relation - $ id_X $ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    any sort of transposition will do. For example, let f($x_1,x_2,x_3$) = ($x_3,x_2,x_1$).
    $endgroup$
    – Joel Pereira
    Jan 2 at 23:42






  • 1




    $begingroup$
    $-x$ on $mathbb R$, $frac 1 x$ on $(0,infty)$. How many millions do you want?
    $endgroup$
    – Kavi Rama Murthy
    Jan 3 at 0:05














0












0








0


1



$begingroup$


I read the following phrase from a textbook




Bijection $ f : M rightarrow M$ known as symmetry if $ f^{-1} = f$.




I am curious, are there any examples of $ f^{-1} = f$ outside of identity relation - $ id_X $ ?










share|cite|improve this question











$endgroup$




I read the following phrase from a textbook




Bijection $ f : M rightarrow M$ known as symmetry if $ f^{-1} = f$.




I am curious, are there any examples of $ f^{-1} = f$ outside of identity relation - $ id_X $ ?







relations inverse-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 0:52









Asaf Karagila

305k33435766




305k33435766










asked Jan 2 at 23:40









DaddyMDaddyM

1515




1515












  • $begingroup$
    any sort of transposition will do. For example, let f($x_1,x_2,x_3$) = ($x_3,x_2,x_1$).
    $endgroup$
    – Joel Pereira
    Jan 2 at 23:42






  • 1




    $begingroup$
    $-x$ on $mathbb R$, $frac 1 x$ on $(0,infty)$. How many millions do you want?
    $endgroup$
    – Kavi Rama Murthy
    Jan 3 at 0:05


















  • $begingroup$
    any sort of transposition will do. For example, let f($x_1,x_2,x_3$) = ($x_3,x_2,x_1$).
    $endgroup$
    – Joel Pereira
    Jan 2 at 23:42






  • 1




    $begingroup$
    $-x$ on $mathbb R$, $frac 1 x$ on $(0,infty)$. How many millions do you want?
    $endgroup$
    – Kavi Rama Murthy
    Jan 3 at 0:05
















$begingroup$
any sort of transposition will do. For example, let f($x_1,x_2,x_3$) = ($x_3,x_2,x_1$).
$endgroup$
– Joel Pereira
Jan 2 at 23:42




$begingroup$
any sort of transposition will do. For example, let f($x_1,x_2,x_3$) = ($x_3,x_2,x_1$).
$endgroup$
– Joel Pereira
Jan 2 at 23:42




1




1




$begingroup$
$-x$ on $mathbb R$, $frac 1 x$ on $(0,infty)$. How many millions do you want?
$endgroup$
– Kavi Rama Murthy
Jan 3 at 0:05




$begingroup$
$-x$ on $mathbb R$, $frac 1 x$ on $(0,infty)$. How many millions do you want?
$endgroup$
– Kavi Rama Murthy
Jan 3 at 0:05










2 Answers
2






active

oldest

votes


















2












$begingroup$

For a set $M$, a function $f:Mto M$ such that $fcirc f=text{id}_M$ is usually known as an involution on $M$. There exists a one-to-one correspondence between the set $mathcal{I}$ of all involutions on $M$ and the set $mathcal{P}$ of partitions of $M$ into subsets of size $1$ or $2$. Such a one-to-one correspondence is given by $phi:mathcal{P}to mathcal{I}$ sending $Pinmathcal{P}$ to
$$f_P(x)=begin{cases}x&text{if }{x}in P,,\y&text{if }{x,y}in Ptext{ with }xneq y,.end{cases}$$
The inverse of $phi$ is $psi:mathcal{I}to mathcal{P}$ sending $finmathcal{I}$ to
$$P_f:=Big{{x},Big|,xin Mtext{ and }f(x)=xBig}cupBig{big{x,f(x)big},Big|,xin Mtext{ and }f(x)neq xBig},.$$
If $M$ is a finite set with $m$ elements and $a_m$ denotes the number of involutions on $M$, then $a_0=1$, $a_1=1$, and $$a_m=a_{m-1}+(m-1)a_{m-2}text{ for }m=2,3,4,ldots,.$$
If $M$ is an infinite set, then the cardinality of $mathcal{I}$ is $2^{|M|}$.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Here's a really simple example:



    Let $X$ be a finite set with $vert X vert$ even; then number the elements of $X$ from $1$ to $2n$, $n in Bbb N$:



    $X = {x_1, x_2, ldots, x_n, x_{n + 1}, x_{n + 2}, ldots, x_{2n} }; tag 1$



    define



    $f:X to X tag 2$



    by



    $f(x_i) = x_{i + n}, ; 1 le i le n, tag 3$



    $f(x_i) = x_{i - n}, ; n + 1 le i le 2n; tag 4$



    then since $n ge 2$,



    $f ne text{Id}_X, tag 5$



    but



    $f(f(x_i)) = f(x_{i + n}) = x_i, ; 1 le i le n, tag 6$



    $f(f(x_i)) = f(x_{i -n}) = x_i, ; n + 1 le i le 2n, tag 7$



    so we see that



    $f^2 = text{Id}_X; tag 8$



    therefore, for $x in X$,



    $f(f(x)) = x, tag 9$



    whence



    $f^{-1}(x) = f^{-1}(f(f(x)) = f(x). tag{10}$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Or, you know, a set with at least two elements, and just switch two of them.
      $endgroup$
      – Asaf Karagila
      Jan 3 at 0:53










    • $begingroup$
      @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
      $endgroup$
      – Robert Lewis
      Jan 3 at 0:58











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060104%2fdirect-mapping-and-inverse-mapping-when-they-can-be-equal%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a set $M$, a function $f:Mto M$ such that $fcirc f=text{id}_M$ is usually known as an involution on $M$. There exists a one-to-one correspondence between the set $mathcal{I}$ of all involutions on $M$ and the set $mathcal{P}$ of partitions of $M$ into subsets of size $1$ or $2$. Such a one-to-one correspondence is given by $phi:mathcal{P}to mathcal{I}$ sending $Pinmathcal{P}$ to
    $$f_P(x)=begin{cases}x&text{if }{x}in P,,\y&text{if }{x,y}in Ptext{ with }xneq y,.end{cases}$$
    The inverse of $phi$ is $psi:mathcal{I}to mathcal{P}$ sending $finmathcal{I}$ to
    $$P_f:=Big{{x},Big|,xin Mtext{ and }f(x)=xBig}cupBig{big{x,f(x)big},Big|,xin Mtext{ and }f(x)neq xBig},.$$
    If $M$ is a finite set with $m$ elements and $a_m$ denotes the number of involutions on $M$, then $a_0=1$, $a_1=1$, and $$a_m=a_{m-1}+(m-1)a_{m-2}text{ for }m=2,3,4,ldots,.$$
    If $M$ is an infinite set, then the cardinality of $mathcal{I}$ is $2^{|M|}$.






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      For a set $M$, a function $f:Mto M$ such that $fcirc f=text{id}_M$ is usually known as an involution on $M$. There exists a one-to-one correspondence between the set $mathcal{I}$ of all involutions on $M$ and the set $mathcal{P}$ of partitions of $M$ into subsets of size $1$ or $2$. Such a one-to-one correspondence is given by $phi:mathcal{P}to mathcal{I}$ sending $Pinmathcal{P}$ to
      $$f_P(x)=begin{cases}x&text{if }{x}in P,,\y&text{if }{x,y}in Ptext{ with }xneq y,.end{cases}$$
      The inverse of $phi$ is $psi:mathcal{I}to mathcal{P}$ sending $finmathcal{I}$ to
      $$P_f:=Big{{x},Big|,xin Mtext{ and }f(x)=xBig}cupBig{big{x,f(x)big},Big|,xin Mtext{ and }f(x)neq xBig},.$$
      If $M$ is a finite set with $m$ elements and $a_m$ denotes the number of involutions on $M$, then $a_0=1$, $a_1=1$, and $$a_m=a_{m-1}+(m-1)a_{m-2}text{ for }m=2,3,4,ldots,.$$
      If $M$ is an infinite set, then the cardinality of $mathcal{I}$ is $2^{|M|}$.






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        For a set $M$, a function $f:Mto M$ such that $fcirc f=text{id}_M$ is usually known as an involution on $M$. There exists a one-to-one correspondence between the set $mathcal{I}$ of all involutions on $M$ and the set $mathcal{P}$ of partitions of $M$ into subsets of size $1$ or $2$. Such a one-to-one correspondence is given by $phi:mathcal{P}to mathcal{I}$ sending $Pinmathcal{P}$ to
        $$f_P(x)=begin{cases}x&text{if }{x}in P,,\y&text{if }{x,y}in Ptext{ with }xneq y,.end{cases}$$
        The inverse of $phi$ is $psi:mathcal{I}to mathcal{P}$ sending $finmathcal{I}$ to
        $$P_f:=Big{{x},Big|,xin Mtext{ and }f(x)=xBig}cupBig{big{x,f(x)big},Big|,xin Mtext{ and }f(x)neq xBig},.$$
        If $M$ is a finite set with $m$ elements and $a_m$ denotes the number of involutions on $M$, then $a_0=1$, $a_1=1$, and $$a_m=a_{m-1}+(m-1)a_{m-2}text{ for }m=2,3,4,ldots,.$$
        If $M$ is an infinite set, then the cardinality of $mathcal{I}$ is $2^{|M|}$.






        share|cite|improve this answer











        $endgroup$



        For a set $M$, a function $f:Mto M$ such that $fcirc f=text{id}_M$ is usually known as an involution on $M$. There exists a one-to-one correspondence between the set $mathcal{I}$ of all involutions on $M$ and the set $mathcal{P}$ of partitions of $M$ into subsets of size $1$ or $2$. Such a one-to-one correspondence is given by $phi:mathcal{P}to mathcal{I}$ sending $Pinmathcal{P}$ to
        $$f_P(x)=begin{cases}x&text{if }{x}in P,,\y&text{if }{x,y}in Ptext{ with }xneq y,.end{cases}$$
        The inverse of $phi$ is $psi:mathcal{I}to mathcal{P}$ sending $finmathcal{I}$ to
        $$P_f:=Big{{x},Big|,xin Mtext{ and }f(x)=xBig}cupBig{big{x,f(x)big},Big|,xin Mtext{ and }f(x)neq xBig},.$$
        If $M$ is a finite set with $m$ elements and $a_m$ denotes the number of involutions on $M$, then $a_0=1$, $a_1=1$, and $$a_m=a_{m-1}+(m-1)a_{m-2}text{ for }m=2,3,4,ldots,.$$
        If $M$ is an infinite set, then the cardinality of $mathcal{I}$ is $2^{|M|}$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 4 at 0:42

























        answered Jan 3 at 1:19









        BatominovskiBatominovski

        33.1k33293




        33.1k33293























            1












            $begingroup$

            Here's a really simple example:



            Let $X$ be a finite set with $vert X vert$ even; then number the elements of $X$ from $1$ to $2n$, $n in Bbb N$:



            $X = {x_1, x_2, ldots, x_n, x_{n + 1}, x_{n + 2}, ldots, x_{2n} }; tag 1$



            define



            $f:X to X tag 2$



            by



            $f(x_i) = x_{i + n}, ; 1 le i le n, tag 3$



            $f(x_i) = x_{i - n}, ; n + 1 le i le 2n; tag 4$



            then since $n ge 2$,



            $f ne text{Id}_X, tag 5$



            but



            $f(f(x_i)) = f(x_{i + n}) = x_i, ; 1 le i le n, tag 6$



            $f(f(x_i)) = f(x_{i -n}) = x_i, ; n + 1 le i le 2n, tag 7$



            so we see that



            $f^2 = text{Id}_X; tag 8$



            therefore, for $x in X$,



            $f(f(x)) = x, tag 9$



            whence



            $f^{-1}(x) = f^{-1}(f(f(x)) = f(x). tag{10}$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Or, you know, a set with at least two elements, and just switch two of them.
              $endgroup$
              – Asaf Karagila
              Jan 3 at 0:53










            • $begingroup$
              @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
              $endgroup$
              – Robert Lewis
              Jan 3 at 0:58
















            1












            $begingroup$

            Here's a really simple example:



            Let $X$ be a finite set with $vert X vert$ even; then number the elements of $X$ from $1$ to $2n$, $n in Bbb N$:



            $X = {x_1, x_2, ldots, x_n, x_{n + 1}, x_{n + 2}, ldots, x_{2n} }; tag 1$



            define



            $f:X to X tag 2$



            by



            $f(x_i) = x_{i + n}, ; 1 le i le n, tag 3$



            $f(x_i) = x_{i - n}, ; n + 1 le i le 2n; tag 4$



            then since $n ge 2$,



            $f ne text{Id}_X, tag 5$



            but



            $f(f(x_i)) = f(x_{i + n}) = x_i, ; 1 le i le n, tag 6$



            $f(f(x_i)) = f(x_{i -n}) = x_i, ; n + 1 le i le 2n, tag 7$



            so we see that



            $f^2 = text{Id}_X; tag 8$



            therefore, for $x in X$,



            $f(f(x)) = x, tag 9$



            whence



            $f^{-1}(x) = f^{-1}(f(f(x)) = f(x). tag{10}$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Or, you know, a set with at least two elements, and just switch two of them.
              $endgroup$
              – Asaf Karagila
              Jan 3 at 0:53










            • $begingroup$
              @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
              $endgroup$
              – Robert Lewis
              Jan 3 at 0:58














            1












            1








            1





            $begingroup$

            Here's a really simple example:



            Let $X$ be a finite set with $vert X vert$ even; then number the elements of $X$ from $1$ to $2n$, $n in Bbb N$:



            $X = {x_1, x_2, ldots, x_n, x_{n + 1}, x_{n + 2}, ldots, x_{2n} }; tag 1$



            define



            $f:X to X tag 2$



            by



            $f(x_i) = x_{i + n}, ; 1 le i le n, tag 3$



            $f(x_i) = x_{i - n}, ; n + 1 le i le 2n; tag 4$



            then since $n ge 2$,



            $f ne text{Id}_X, tag 5$



            but



            $f(f(x_i)) = f(x_{i + n}) = x_i, ; 1 le i le n, tag 6$



            $f(f(x_i)) = f(x_{i -n}) = x_i, ; n + 1 le i le 2n, tag 7$



            so we see that



            $f^2 = text{Id}_X; tag 8$



            therefore, for $x in X$,



            $f(f(x)) = x, tag 9$



            whence



            $f^{-1}(x) = f^{-1}(f(f(x)) = f(x). tag{10}$






            share|cite|improve this answer









            $endgroup$



            Here's a really simple example:



            Let $X$ be a finite set with $vert X vert$ even; then number the elements of $X$ from $1$ to $2n$, $n in Bbb N$:



            $X = {x_1, x_2, ldots, x_n, x_{n + 1}, x_{n + 2}, ldots, x_{2n} }; tag 1$



            define



            $f:X to X tag 2$



            by



            $f(x_i) = x_{i + n}, ; 1 le i le n, tag 3$



            $f(x_i) = x_{i - n}, ; n + 1 le i le 2n; tag 4$



            then since $n ge 2$,



            $f ne text{Id}_X, tag 5$



            but



            $f(f(x_i)) = f(x_{i + n}) = x_i, ; 1 le i le n, tag 6$



            $f(f(x_i)) = f(x_{i -n}) = x_i, ; n + 1 le i le 2n, tag 7$



            so we see that



            $f^2 = text{Id}_X; tag 8$



            therefore, for $x in X$,



            $f(f(x)) = x, tag 9$



            whence



            $f^{-1}(x) = f^{-1}(f(f(x)) = f(x). tag{10}$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 3 at 0:28









            Robert LewisRobert Lewis

            47.5k23067




            47.5k23067








            • 1




              $begingroup$
              Or, you know, a set with at least two elements, and just switch two of them.
              $endgroup$
              – Asaf Karagila
              Jan 3 at 0:53










            • $begingroup$
              @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
              $endgroup$
              – Robert Lewis
              Jan 3 at 0:58














            • 1




              $begingroup$
              Or, you know, a set with at least two elements, and just switch two of them.
              $endgroup$
              – Asaf Karagila
              Jan 3 at 0:53










            • $begingroup$
              @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
              $endgroup$
              – Robert Lewis
              Jan 3 at 0:58








            1




            1




            $begingroup$
            Or, you know, a set with at least two elements, and just switch two of them.
            $endgroup$
            – Asaf Karagila
            Jan 3 at 0:53




            $begingroup$
            Or, you know, a set with at least two elements, and just switch two of them.
            $endgroup$
            – Asaf Karagila
            Jan 3 at 0:53












            $begingroup$
            @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
            $endgroup$
            – Robert Lewis
            Jan 3 at 0:58




            $begingroup$
            @AsafKaragila: Oh yeah, of course. I guess I went for the obvious generalization! :)
            $endgroup$
            – Robert Lewis
            Jan 3 at 0:58


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060104%2fdirect-mapping-and-inverse-mapping-when-they-can-be-equal%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei