If $ sumlimits_{n=1}^{N} a_n r_n=0$, what can we say about $ sumlimits_{n=1}^{N} a_n (r_n)^2=0$












1












$begingroup$


If $displaystyle sum_{n=1}^{N} a_n r_n=0$ for every natural $N$ where $a_nin mathbb{R}$ and $r_nin(0,1]$, can we conclude anything significant about $displaystyle sum_{n=1}^{N} a_n (r_n)^2,displaystyle sum_{n=1}^{N} a_n (r_n)^3.. $?



EDIT: The related and completed question is in my new post here: (Find constants $b_i$ such that $sum_{n=1}^{N} a_n (sum_{n=1}^{t} b_i[r_n-(r_n)^2]+s(i))=0$)










share|cite|improve this question











$endgroup$








  • 11




    $begingroup$
    If $sum_{n=1}^{N}{a_nr_n}=0$ for every $N$, doesn't that mean $a_Nr_N=0$ for every $N$?
    $endgroup$
    – Ant
    Jan 2 at 21:46






  • 1




    $begingroup$
    Yessssssssssss!
    $endgroup$
    – ersh
    Jan 2 at 22:09






  • 1




    $begingroup$
    Thus, no question?
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    Please do not use displaystyle in titles.
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    @Winther Thanks, I will be reviving my work and notebook first. I think there is something missing.
    $endgroup$
    – ersh
    Jan 2 at 22:40
















1












$begingroup$


If $displaystyle sum_{n=1}^{N} a_n r_n=0$ for every natural $N$ where $a_nin mathbb{R}$ and $r_nin(0,1]$, can we conclude anything significant about $displaystyle sum_{n=1}^{N} a_n (r_n)^2,displaystyle sum_{n=1}^{N} a_n (r_n)^3.. $?



EDIT: The related and completed question is in my new post here: (Find constants $b_i$ such that $sum_{n=1}^{N} a_n (sum_{n=1}^{t} b_i[r_n-(r_n)^2]+s(i))=0$)










share|cite|improve this question











$endgroup$








  • 11




    $begingroup$
    If $sum_{n=1}^{N}{a_nr_n}=0$ for every $N$, doesn't that mean $a_Nr_N=0$ for every $N$?
    $endgroup$
    – Ant
    Jan 2 at 21:46






  • 1




    $begingroup$
    Yessssssssssss!
    $endgroup$
    – ersh
    Jan 2 at 22:09






  • 1




    $begingroup$
    Thus, no question?
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    Please do not use displaystyle in titles.
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    @Winther Thanks, I will be reviving my work and notebook first. I think there is something missing.
    $endgroup$
    – ersh
    Jan 2 at 22:40














1












1








1





$begingroup$


If $displaystyle sum_{n=1}^{N} a_n r_n=0$ for every natural $N$ where $a_nin mathbb{R}$ and $r_nin(0,1]$, can we conclude anything significant about $displaystyle sum_{n=1}^{N} a_n (r_n)^2,displaystyle sum_{n=1}^{N} a_n (r_n)^3.. $?



EDIT: The related and completed question is in my new post here: (Find constants $b_i$ such that $sum_{n=1}^{N} a_n (sum_{n=1}^{t} b_i[r_n-(r_n)^2]+s(i))=0$)










share|cite|improve this question











$endgroup$




If $displaystyle sum_{n=1}^{N} a_n r_n=0$ for every natural $N$ where $a_nin mathbb{R}$ and $r_nin(0,1]$, can we conclude anything significant about $displaystyle sum_{n=1}^{N} a_n (r_n)^2,displaystyle sum_{n=1}^{N} a_n (r_n)^3.. $?



EDIT: The related and completed question is in my new post here: (Find constants $b_i$ such that $sum_{n=1}^{N} a_n (sum_{n=1}^{t} b_i[r_n-(r_n)^2]+s(i))=0$)







real-analysis summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 22:36







ersh

















asked Jan 2 at 21:41









ershersh

423113




423113








  • 11




    $begingroup$
    If $sum_{n=1}^{N}{a_nr_n}=0$ for every $N$, doesn't that mean $a_Nr_N=0$ for every $N$?
    $endgroup$
    – Ant
    Jan 2 at 21:46






  • 1




    $begingroup$
    Yessssssssssss!
    $endgroup$
    – ersh
    Jan 2 at 22:09






  • 1




    $begingroup$
    Thus, no question?
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    Please do not use displaystyle in titles.
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    @Winther Thanks, I will be reviving my work and notebook first. I think there is something missing.
    $endgroup$
    – ersh
    Jan 2 at 22:40














  • 11




    $begingroup$
    If $sum_{n=1}^{N}{a_nr_n}=0$ for every $N$, doesn't that mean $a_Nr_N=0$ for every $N$?
    $endgroup$
    – Ant
    Jan 2 at 21:46






  • 1




    $begingroup$
    Yessssssssssss!
    $endgroup$
    – ersh
    Jan 2 at 22:09






  • 1




    $begingroup$
    Thus, no question?
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    Please do not use displaystyle in titles.
    $endgroup$
    – Did
    Jan 2 at 22:31










  • $begingroup$
    @Winther Thanks, I will be reviving my work and notebook first. I think there is something missing.
    $endgroup$
    – ersh
    Jan 2 at 22:40








11




11




$begingroup$
If $sum_{n=1}^{N}{a_nr_n}=0$ for every $N$, doesn't that mean $a_Nr_N=0$ for every $N$?
$endgroup$
– Ant
Jan 2 at 21:46




$begingroup$
If $sum_{n=1}^{N}{a_nr_n}=0$ for every $N$, doesn't that mean $a_Nr_N=0$ for every $N$?
$endgroup$
– Ant
Jan 2 at 21:46




1




1




$begingroup$
Yessssssssssss!
$endgroup$
– ersh
Jan 2 at 22:09




$begingroup$
Yessssssssssss!
$endgroup$
– ersh
Jan 2 at 22:09




1




1




$begingroup$
Thus, no question?
$endgroup$
– Did
Jan 2 at 22:31




$begingroup$
Thus, no question?
$endgroup$
– Did
Jan 2 at 22:31












$begingroup$
Please do not use displaystyle in titles.
$endgroup$
– Did
Jan 2 at 22:31




$begingroup$
Please do not use displaystyle in titles.
$endgroup$
– Did
Jan 2 at 22:31












$begingroup$
@Winther Thanks, I will be reviving my work and notebook first. I think there is something missing.
$endgroup$
– ersh
Jan 2 at 22:40




$begingroup$
@Winther Thanks, I will be reviving my work and notebook first. I think there is something missing.
$endgroup$
– ersh
Jan 2 at 22:40










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060006%2fif-sum-limits-n-1n-a-n-r-n-0-what-can-we-say-about-sum-limits-n-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060006%2fif-sum-limits-n-1n-a-n-r-n-0-what-can-we-say-about-sum-limits-n-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei