Find the $frac mn$ if $T=sin 5°+sin10°+sin 15°+cdots+sin175°=tan frac mn$












2












$begingroup$


It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.




$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$



Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.




Attepmts:



$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$



and then I can not see an any way...










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    See this post to represent the summation as a fraction and continue from there.
    $endgroup$
    – Math Lover
    Jan 2 at 20:18








  • 1




    $begingroup$
    artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
    $endgroup$
    – user574848
    Jan 4 at 21:39
















2












$begingroup$


It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.




$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$



Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.




Attepmts:



$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$



and then I can not see an any way...










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    See this post to represent the summation as a fraction and continue from there.
    $endgroup$
    – Math Lover
    Jan 2 at 20:18








  • 1




    $begingroup$
    artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
    $endgroup$
    – user574848
    Jan 4 at 21:39














2












2








2


2



$begingroup$


It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.




$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$



Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.




Attepmts:



$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$



and then I can not see an any way...










share|cite|improve this question











$endgroup$




It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.




$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$



Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.




Attepmts:



$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$



and then I can not see an any way...







algebra-precalculus trigonometry summation contest-math






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 21:53









El borito

666216




666216










asked Jan 2 at 20:01









ElementaryElementary

361111




361111








  • 4




    $begingroup$
    See this post to represent the summation as a fraction and continue from there.
    $endgroup$
    – Math Lover
    Jan 2 at 20:18








  • 1




    $begingroup$
    artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
    $endgroup$
    – user574848
    Jan 4 at 21:39














  • 4




    $begingroup$
    See this post to represent the summation as a fraction and continue from there.
    $endgroup$
    – Math Lover
    Jan 2 at 20:18








  • 1




    $begingroup$
    artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
    $endgroup$
    – user574848
    Jan 4 at 21:39








4




4




$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18






$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18






1




1




$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39




$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39










2 Answers
2






active

oldest

votes


















6












$begingroup$

Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$

As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    That looks negative.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:20










  • $begingroup$
    @LordSharktheUnknown Found the sign error, fixing now
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:21






  • 2




    $begingroup$
    $(sin x)/(1-cos x)=cot (x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:22










  • $begingroup$
    @LordSharktheUnknown Well, that certainly explains it
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:23






  • 1




    $begingroup$
    @Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:32



















3












$begingroup$

By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$

and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$

or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:43










  • $begingroup$
    Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:47










  • $begingroup$
    @Omnomnomnom I put it in the main text
    $endgroup$
    – Andreas
    Jan 2 at 20:53











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059906%2ffind-the-frac-mn-if-t-sin-5-sin10-sin-15-cdots-sin175-tan-frac-mn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$

As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    That looks negative.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:20










  • $begingroup$
    @LordSharktheUnknown Found the sign error, fixing now
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:21






  • 2




    $begingroup$
    $(sin x)/(1-cos x)=cot (x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:22










  • $begingroup$
    @LordSharktheUnknown Well, that certainly explains it
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:23






  • 1




    $begingroup$
    @Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:32
















6












$begingroup$

Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$

As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    That looks negative.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:20










  • $begingroup$
    @LordSharktheUnknown Found the sign error, fixing now
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:21






  • 2




    $begingroup$
    $(sin x)/(1-cos x)=cot (x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:22










  • $begingroup$
    @LordSharktheUnknown Well, that certainly explains it
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:23






  • 1




    $begingroup$
    @Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:32














6












6








6





$begingroup$

Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$

As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$






share|cite|improve this answer











$endgroup$



Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$

As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 21:12









El borito

666216




666216










answered Jan 2 at 20:19









OmnomnomnomOmnomnomnom

128k791185




128k791185












  • $begingroup$
    That looks negative.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:20










  • $begingroup$
    @LordSharktheUnknown Found the sign error, fixing now
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:21






  • 2




    $begingroup$
    $(sin x)/(1-cos x)=cot (x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:22










  • $begingroup$
    @LordSharktheUnknown Well, that certainly explains it
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:23






  • 1




    $begingroup$
    @Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:32


















  • $begingroup$
    That looks negative.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:20










  • $begingroup$
    @LordSharktheUnknown Found the sign error, fixing now
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:21






  • 2




    $begingroup$
    $(sin x)/(1-cos x)=cot (x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 2 at 20:22










  • $begingroup$
    @LordSharktheUnknown Well, that certainly explains it
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:23






  • 1




    $begingroup$
    @Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:32
















$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20




$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20












$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21




$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21




2




2




$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22




$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22












$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23




$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23




1




1




$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32




$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32











3












$begingroup$

By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$

and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$

or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:43










  • $begingroup$
    Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:47










  • $begingroup$
    @Omnomnomnom I put it in the main text
    $endgroup$
    – Andreas
    Jan 2 at 20:53
















3












$begingroup$

By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$

and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$

or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:43










  • $begingroup$
    Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:47










  • $begingroup$
    @Omnomnomnom I put it in the main text
    $endgroup$
    – Andreas
    Jan 2 at 20:53














3












3








3





$begingroup$

By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$

and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$

or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $






share|cite|improve this answer











$endgroup$



By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$

and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$

or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 20:59

























answered Jan 2 at 20:38









AndreasAndreas

8,1481137




8,1481137












  • $begingroup$
    Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:43










  • $begingroup$
    Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:47










  • $begingroup$
    @Omnomnomnom I put it in the main text
    $endgroup$
    – Andreas
    Jan 2 at 20:53


















  • $begingroup$
    Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:43










  • $begingroup$
    Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
    $endgroup$
    – Omnomnomnom
    Jan 2 at 20:47










  • $begingroup$
    @Omnomnomnom I put it in the main text
    $endgroup$
    – Andreas
    Jan 2 at 20:53
















$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43




$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43












$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47




$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47












$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53




$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059906%2ffind-the-frac-mn-if-t-sin-5-sin10-sin-15-cdots-sin175-tan-frac-mn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei