Find the $frac mn$ if $T=sin 5°+sin10°+sin 15°+cdots+sin175°=tan frac mn$
$begingroup$
It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.
$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$
Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.
Attepmts:
$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$
and then I can not see an any way...
algebra-precalculus trigonometry summation contest-math
$endgroup$
add a comment |
$begingroup$
It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.
$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$
Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.
Attepmts:
$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$
and then I can not see an any way...
algebra-precalculus trigonometry summation contest-math
$endgroup$
4
$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18
1
$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39
add a comment |
$begingroup$
It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.
$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$
Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.
Attepmts:
$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$
and then I can not see an any way...
algebra-precalculus trigonometry summation contest-math
$endgroup$
It's really embarrassing to be able to doesn't solve this simple-looking trigonometry question.
$$T=sin(5^circ) +sin(10^circ) + sin(15^circ) + cdots +sin(175^circ) =tan frac mn$$
Find the $frac mn=?$, where $m$ and $n$ are positive integer numbers.
Attepmts:
$$T=2Big(sin(5°)+sin(10°) + cdots + sin(85°)Big) + 1 = 2Big((sin(5°) + cos(5°))+(sin(10°)+ cos(10°))+cdots + (sin(40°)+cos(40°))Big)+1 = 2Big(sqrt 2((sin50°+sin55°)+cdots+sin(80°))Big)+1.$$
and then I can not see an any way...
algebra-precalculus trigonometry summation contest-math
algebra-precalculus trigonometry summation contest-math
edited Jan 2 at 21:53
El borito
666216
666216
asked Jan 2 at 20:01
ElementaryElementary
361111
361111
4
$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18
1
$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39
add a comment |
4
$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18
1
$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39
4
4
$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18
$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18
1
1
$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39
$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$
As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$
$endgroup$
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
2
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
1
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
|
show 7 more comments
$begingroup$
By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$
and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$
or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $
$endgroup$
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059906%2ffind-the-frac-mn-if-t-sin-5-sin10-sin-15-cdots-sin175-tan-frac-mn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$
As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$
$endgroup$
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
2
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
1
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
|
show 7 more comments
$begingroup$
Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$
As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$
$endgroup$
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
2
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
1
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
|
show 7 more comments
$begingroup$
Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$
As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$
$endgroup$
Not exactly the most elementary approach, but with complex numbers we could write
$$
T = operatorname{Im}left(1 + e^{frac{pi}{36}i} + e^{2frac{pi}{36}i} + cdots + e^{35frac{pi}{36}i}right) \
=operatorname{Im}left(1 + z + z^2 + cdots + z^{35}right) quad left(z = e^{frac{pi}{36}i}right)\
= operatorname{Im}left(frac{1 - z^{36}}{1 - z}right) = operatorname{Im}left(frac{2}{(1 - cos(5^circ)) - isin(5^circ)}right)\
= operatorname{Im}left(frac{2}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}[(1 - cos(5^circ)) + isin(5^circ)]right)
\ = frac{2 sin(5^circ)}{[1 - cos(5^circ)]^2 + sin^2(5^circ)}
\ = frac{2 sin(5^circ)}{2 - 2cos(5^circ)} = frac{sin(5^circ)}{1 - cos(5^circ)}
$$
As the commenter below points out, we have $displaystylefrac{sin x}{1 - cos x} = tanleft(90^circ - frac{x}{2}right)$. It follows that our answer is
$$
frac{sin(5^circ)}{1 - cos(5^circ)} = tanleft(90^circ - frac{5^circ}{2}right) = tan(87.5^circ) = tanleft(left[frac{175}{2}right]^circright)
$$
edited Jan 2 at 21:12
El borito
666216
666216
answered Jan 2 at 20:19
OmnomnomnomOmnomnomnom
128k791185
128k791185
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
2
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
1
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
|
show 7 more comments
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
2
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
1
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
That looks negative.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:20
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
$begingroup$
@LordSharktheUnknown Found the sign error, fixing now
$endgroup$
– Omnomnomnom
Jan 2 at 20:21
2
2
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
$(sin x)/(1-cos x)=cot (x/2)$.
$endgroup$
– Lord Shark the Unknown
Jan 2 at 20:22
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
$begingroup$
@LordSharktheUnknown Well, that certainly explains it
$endgroup$
– Omnomnomnom
Jan 2 at 20:23
1
1
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
$begingroup$
@Beginner you should see this post linked above. It looks to me like you were at least trying the right kind of trick
$endgroup$
– Omnomnomnom
Jan 2 at 20:32
|
show 7 more comments
$begingroup$
By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$
and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$
or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $
$endgroup$
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
add a comment |
$begingroup$
By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$
and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$
or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $
$endgroup$
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
add a comment |
$begingroup$
By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$
and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$
or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $
$endgroup$
By geometric series,
$$T=sin 5°+sin10°+sin 15°+...+sin175° = \
operatorname{Im} (sum_{n=1}^{35}exp(i n 5 pi/180)) =\
operatorname{Im} exp(i 5 pi/180) frac{exp(i 35 cdot 5 pi/180)-1}{exp(i 5 pi/180)-1} =\
operatorname{Im} exp(i 5 pi/180) exp(i 34 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\
operatorname{Im} exp(i 36 cdot 5 pi/360) frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} =
\ frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} \
$$
and
$$
arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( frac{pi}{2} - 5 pi/360)} ) = \
arctan(frac{sin( 35 cdot 5 pi/360)}{cos( 35 cdot 5 pi/360)} ) =
frac{35 pi}{72}
$$
or, in degrees, $frac{35 cdot 180}{72} =frac{175}{2} = 87.5 $
edited Jan 2 at 20:59
answered Jan 2 at 20:38
AndreasAndreas
8,1481137
8,1481137
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
add a comment |
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Is there a quick or clever way to compute $$ arctan(frac{sin( 35 cdot 5 pi/360)}{sin( 5 pi/360)} ) = frac{35 pi}{72} ? $$
$endgroup$
– Omnomnomnom
Jan 2 at 20:43
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
Never mind, I see now that the expression in the parentheses can immediately be rewritten as $sin(87.5^circ)/cos(87.5^circ)$.
$endgroup$
– Omnomnomnom
Jan 2 at 20:47
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
$begingroup$
@Omnomnomnom I put it in the main text
$endgroup$
– Andreas
Jan 2 at 20:53
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059906%2ffind-the-frac-mn-if-t-sin-5-sin10-sin-15-cdots-sin175-tan-frac-mn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
See this post to represent the summation as a fraction and continue from there.
$endgroup$
– Math Lover
Jan 2 at 20:18
1
$begingroup$
artofproblemsolving.com/wiki/index.php/1999_AIME_Problems/…
$endgroup$
– user574848
Jan 4 at 21:39