Tikz: The common tangent and the shaded region











up vote
8
down vote

favorite
3












What are possible options to construct the tangent line (along with the shaded region) as shown below?



enter image description here



MWE:



documentclass[tikz, border=1cm]{standalone}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
end{tikzpicture}
end{document}









share|improve this question




























    up vote
    8
    down vote

    favorite
    3












    What are possible options to construct the tangent line (along with the shaded region) as shown below?



    enter image description here



    MWE:



    documentclass[tikz, border=1cm]{standalone}
    begin{document}
    begin{tikzpicture}
    coordinate (A) at (0,0);
    coordinate (B) at (0,7);
    coordinate (C) at (7,7);
    coordinate (D) at (7,0);
    coordinate (E) at (0,4);
    coordinate (F) at (3,7);
    coordinate (G) at (7,4);
    coordinate (H) at (3,0);
    coordinate (M) at (5,2);
    coordinate (N) at (1.5,5.5);
    draw (A)--(B)--(C)--(D)--cycle;
    draw (E)--(G);
    draw (F)--(H);
    draw (N) circle [radius=1.5];
    draw (M) circle [radius=2];
    end{tikzpicture}
    end{document}









    share|improve this question


























      up vote
      8
      down vote

      favorite
      3









      up vote
      8
      down vote

      favorite
      3






      3





      What are possible options to construct the tangent line (along with the shaded region) as shown below?



      enter image description here



      MWE:



      documentclass[tikz, border=1cm]{standalone}
      begin{document}
      begin{tikzpicture}
      coordinate (A) at (0,0);
      coordinate (B) at (0,7);
      coordinate (C) at (7,7);
      coordinate (D) at (7,0);
      coordinate (E) at (0,4);
      coordinate (F) at (3,7);
      coordinate (G) at (7,4);
      coordinate (H) at (3,0);
      coordinate (M) at (5,2);
      coordinate (N) at (1.5,5.5);
      draw (A)--(B)--(C)--(D)--cycle;
      draw (E)--(G);
      draw (F)--(H);
      draw (N) circle [radius=1.5];
      draw (M) circle [radius=2];
      end{tikzpicture}
      end{document}









      share|improve this question















      What are possible options to construct the tangent line (along with the shaded region) as shown below?



      enter image description here



      MWE:



      documentclass[tikz, border=1cm]{standalone}
      begin{document}
      begin{tikzpicture}
      coordinate (A) at (0,0);
      coordinate (B) at (0,7);
      coordinate (C) at (7,7);
      coordinate (D) at (7,0);
      coordinate (E) at (0,4);
      coordinate (F) at (3,7);
      coordinate (G) at (7,4);
      coordinate (H) at (3,0);
      coordinate (M) at (5,2);
      coordinate (N) at (1.5,5.5);
      draw (A)--(B)--(C)--(D)--cycle;
      draw (E)--(G);
      draw (F)--(H);
      draw (N) circle [radius=1.5];
      draw (M) circle [radius=2];
      end{tikzpicture}
      end{document}






      tikz-pgf






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 11 hours ago

























      asked 14 hours ago









      blackened

      1,356712




      1,356712






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          12
          down vote



          accepted










          Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc}
          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          pgfmathsetmacro{rone}{1.5}
          pgfmathsetmacro{rtwo}{2}
          pgfmathsetmacro{mid}{rone/(rone + rtwo)}
          pgfmathsetmacro{out}{rone/(rone - rtwo)}
          node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
          node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
          path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
          path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
          foreach i in {1,2}
          {foreach j in {1,2}
          {foreach k in {mid,out}
          {coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
          foreach i in {2}
          {
          draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
          }

          end{tikzpicture}
          end{document}


          enter image description here



          However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are




          1. The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.

          2. Given the slope, the respective points on the circle are uniquely determined (modulo 180).


          One thus arrives at



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc,backgrounds}
          begin{document}
          begin{tikzpicture}[tangent of circles/.style args={%
          at #1 and #2 with radii #3 and #4}{insert path={%
          let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
          n3={atan2(#4-#3,n2)}
          in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          draw (N) circle [radius=1.5];
          draw (M) circle [radius=2];
          path[tangent of circles={at N and M with radii 1.5 and 2}]
          coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
          % extend the tangent
          draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
          -- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
          % fill the region above right of the tangent
          begin{scope}[on background layer]
          fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
          second line={(E)--(G)}) -| (C) -|
          (intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
          -- cycle;
          end{scope}
          % draw the little squares
          draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
          (F) rectangle ++ (0.4,-0.4)
          (G) rectangle ++ (-0.4,0.4)
          (intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
          rectangle ++ (0.4,0.4);
          draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
          left]
          {$vec r_2$};
          draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
          left]
          {$vec r_1$};
          node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
          end{tikzpicture}
          end{document}


          enter image description here



          Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.






          share|improve this answer























          • The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
            – marmot
            11 hours ago










          • @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
            – blackened
            10 hours ago










          • @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
            – marmot
            10 hours ago




















          up vote
          6
          down vote













          A PSTricks solution only for comparison purposes.



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl}
          begin{document}
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
          psCircleTangents(P){2}(Q){2}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){2}
          pscircle(Q){2}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
          endpspicture
          end{document}


          enter image description here



          Different Radii



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl,pst-calculate}

          begin{document}
          foreach x in {4,4.5,...,6.0}{%
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
          psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){pscalculate{x/2}}
          pscircle(Q){pscalculate{(8-x)/2}}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
          endpspicture}
          end{document}


          enter image description here






          share|improve this answer























          • @marmot In the original question, the radii are different.
            – blackened
            11 hours ago











          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464139%2ftikz-the-common-tangent-and-the-shaded-region%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          12
          down vote



          accepted










          Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc}
          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          pgfmathsetmacro{rone}{1.5}
          pgfmathsetmacro{rtwo}{2}
          pgfmathsetmacro{mid}{rone/(rone + rtwo)}
          pgfmathsetmacro{out}{rone/(rone - rtwo)}
          node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
          node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
          path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
          path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
          foreach i in {1,2}
          {foreach j in {1,2}
          {foreach k in {mid,out}
          {coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
          foreach i in {2}
          {
          draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
          }

          end{tikzpicture}
          end{document}


          enter image description here



          However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are




          1. The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.

          2. Given the slope, the respective points on the circle are uniquely determined (modulo 180).


          One thus arrives at



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc,backgrounds}
          begin{document}
          begin{tikzpicture}[tangent of circles/.style args={%
          at #1 and #2 with radii #3 and #4}{insert path={%
          let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
          n3={atan2(#4-#3,n2)}
          in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          draw (N) circle [radius=1.5];
          draw (M) circle [radius=2];
          path[tangent of circles={at N and M with radii 1.5 and 2}]
          coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
          % extend the tangent
          draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
          -- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
          % fill the region above right of the tangent
          begin{scope}[on background layer]
          fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
          second line={(E)--(G)}) -| (C) -|
          (intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
          -- cycle;
          end{scope}
          % draw the little squares
          draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
          (F) rectangle ++ (0.4,-0.4)
          (G) rectangle ++ (-0.4,0.4)
          (intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
          rectangle ++ (0.4,0.4);
          draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
          left]
          {$vec r_2$};
          draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
          left]
          {$vec r_1$};
          node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
          end{tikzpicture}
          end{document}


          enter image description here



          Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.






          share|improve this answer























          • The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
            – marmot
            11 hours ago










          • @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
            – blackened
            10 hours ago










          • @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
            – marmot
            10 hours ago

















          up vote
          12
          down vote



          accepted










          Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc}
          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          pgfmathsetmacro{rone}{1.5}
          pgfmathsetmacro{rtwo}{2}
          pgfmathsetmacro{mid}{rone/(rone + rtwo)}
          pgfmathsetmacro{out}{rone/(rone - rtwo)}
          node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
          node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
          path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
          path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
          foreach i in {1,2}
          {foreach j in {1,2}
          {foreach k in {mid,out}
          {coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
          foreach i in {2}
          {
          draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
          }

          end{tikzpicture}
          end{document}


          enter image description here



          However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are




          1. The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.

          2. Given the slope, the respective points on the circle are uniquely determined (modulo 180).


          One thus arrives at



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc,backgrounds}
          begin{document}
          begin{tikzpicture}[tangent of circles/.style args={%
          at #1 and #2 with radii #3 and #4}{insert path={%
          let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
          n3={atan2(#4-#3,n2)}
          in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          draw (N) circle [radius=1.5];
          draw (M) circle [radius=2];
          path[tangent of circles={at N and M with radii 1.5 and 2}]
          coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
          % extend the tangent
          draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
          -- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
          % fill the region above right of the tangent
          begin{scope}[on background layer]
          fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
          second line={(E)--(G)}) -| (C) -|
          (intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
          -- cycle;
          end{scope}
          % draw the little squares
          draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
          (F) rectangle ++ (0.4,-0.4)
          (G) rectangle ++ (-0.4,0.4)
          (intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
          rectangle ++ (0.4,0.4);
          draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
          left]
          {$vec r_2$};
          draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
          left]
          {$vec r_1$};
          node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
          end{tikzpicture}
          end{document}


          enter image description here



          Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.






          share|improve this answer























          • The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
            – marmot
            11 hours ago










          • @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
            – blackened
            10 hours ago










          • @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
            – marmot
            10 hours ago















          up vote
          12
          down vote



          accepted







          up vote
          12
          down vote



          accepted






          Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc}
          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          pgfmathsetmacro{rone}{1.5}
          pgfmathsetmacro{rtwo}{2}
          pgfmathsetmacro{mid}{rone/(rone + rtwo)}
          pgfmathsetmacro{out}{rone/(rone - rtwo)}
          node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
          node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
          path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
          path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
          foreach i in {1,2}
          {foreach j in {1,2}
          {foreach k in {mid,out}
          {coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
          foreach i in {2}
          {
          draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
          }

          end{tikzpicture}
          end{document}


          enter image description here



          However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are




          1. The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.

          2. Given the slope, the respective points on the circle are uniquely determined (modulo 180).


          One thus arrives at



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc,backgrounds}
          begin{document}
          begin{tikzpicture}[tangent of circles/.style args={%
          at #1 and #2 with radii #3 and #4}{insert path={%
          let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
          n3={atan2(#4-#3,n2)}
          in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          draw (N) circle [radius=1.5];
          draw (M) circle [radius=2];
          path[tangent of circles={at N and M with radii 1.5 and 2}]
          coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
          % extend the tangent
          draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
          -- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
          % fill the region above right of the tangent
          begin{scope}[on background layer]
          fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
          second line={(E)--(G)}) -| (C) -|
          (intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
          -- cycle;
          end{scope}
          % draw the little squares
          draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
          (F) rectangle ++ (0.4,-0.4)
          (G) rectangle ++ (-0.4,0.4)
          (intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
          rectangle ++ (0.4,0.4);
          draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
          left]
          {$vec r_2$};
          draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
          left]
          {$vec r_1$};
          node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
          end{tikzpicture}
          end{document}


          enter image description here



          Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.






          share|improve this answer














          Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc}
          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          pgfmathsetmacro{rone}{1.5}
          pgfmathsetmacro{rtwo}{2}
          pgfmathsetmacro{mid}{rone/(rone + rtwo)}
          pgfmathsetmacro{out}{rone/(rone - rtwo)}
          node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
          node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
          path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
          path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
          foreach i in {1,2}
          {foreach j in {1,2}
          {foreach k in {mid,out}
          {coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
          foreach i in {2}
          {
          draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
          }

          end{tikzpicture}
          end{document}


          enter image description here



          However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are




          1. The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.

          2. Given the slope, the respective points on the circle are uniquely determined (modulo 180).


          One thus arrives at



          documentclass[tikz, border=1cm]{standalone}
          usetikzlibrary{calc,backgrounds}
          begin{document}
          begin{tikzpicture}[tangent of circles/.style args={%
          at #1 and #2 with radii #3 and #4}{insert path={%
          let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
          n3={atan2(#4-#3,n2)}
          in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
          coordinate (A) at (0,0);
          coordinate (B) at (0,7);
          coordinate (C) at (7,7);
          coordinate (D) at (7,0);
          coordinate (E) at (0,4);
          coordinate (F) at (3,7);
          coordinate (G) at (7,4);
          coordinate (H) at (3,0);
          coordinate (M) at (5,2);
          coordinate (N) at (1.5,5.5);
          draw (A)--(B)--(C)--(D)--cycle;
          draw (E)--(G);
          draw (F)--(H);
          draw (N) circle [radius=1.5];
          draw (M) circle [radius=2];
          path[tangent of circles={at N and M with radii 1.5 and 2}]
          coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
          % extend the tangent
          draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
          -- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
          % fill the region above right of the tangent
          begin{scope}[on background layer]
          fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
          second line={(E)--(G)}) -| (C) -|
          (intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
          -- cycle;
          end{scope}
          % draw the little squares
          draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
          (F) rectangle ++ (0.4,-0.4)
          (G) rectangle ++ (-0.4,0.4)
          (intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
          rectangle ++ (0.4,0.4);
          draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
          left]
          {$vec r_2$};
          draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
          left]
          {$vec r_1$};
          node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
          end{tikzpicture}
          end{document}


          enter image description here



          Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 10 hours ago

























          answered 14 hours ago









          marmot

          82.1k492175




          82.1k492175












          • The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
            – marmot
            11 hours ago










          • @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
            – blackened
            10 hours ago










          • @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
            – marmot
            10 hours ago




















          • The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
            – marmot
            11 hours ago










          • @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
            – blackened
            10 hours ago










          • @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
            – marmot
            10 hours ago


















          The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
          – marmot
          11 hours ago




          The remaining annotation may be added with node at (barycentric cs:C=1,G=1,F=1) {$S_x$};.
          – marmot
          11 hours ago












          @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
          – blackened
          10 hours ago




          @marmot Is it the case that the tangent is drawn twice? (On my screen the tangent line looks thicker than other lines, it makes it look somewhat jaggy.)
          – blackened
          10 hours ago












          @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
          – marmot
          10 hours ago






          @blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
          – marmot
          10 hours ago












          up vote
          6
          down vote













          A PSTricks solution only for comparison purposes.



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl}
          begin{document}
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
          psCircleTangents(P){2}(Q){2}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){2}
          pscircle(Q){2}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
          endpspicture
          end{document}


          enter image description here



          Different Radii



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl,pst-calculate}

          begin{document}
          foreach x in {4,4.5,...,6.0}{%
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
          psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){pscalculate{x/2}}
          pscircle(Q){pscalculate{(8-x)/2}}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
          endpspicture}
          end{document}


          enter image description here






          share|improve this answer























          • @marmot In the original question, the radii are different.
            – blackened
            11 hours ago















          up vote
          6
          down vote













          A PSTricks solution only for comparison purposes.



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl}
          begin{document}
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
          psCircleTangents(P){2}(Q){2}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){2}
          pscircle(Q){2}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
          endpspicture
          end{document}


          enter image description here



          Different Radii



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl,pst-calculate}

          begin{document}
          foreach x in {4,4.5,...,6.0}{%
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
          psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){pscalculate{x/2}}
          pscircle(Q){pscalculate{(8-x)/2}}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
          endpspicture}
          end{document}


          enter image description here






          share|improve this answer























          • @marmot In the original question, the radii are different.
            – blackened
            11 hours ago













          up vote
          6
          down vote










          up vote
          6
          down vote









          A PSTricks solution only for comparison purposes.



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl}
          begin{document}
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
          psCircleTangents(P){2}(Q){2}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){2}
          pscircle(Q){2}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
          endpspicture
          end{document}


          enter image description here



          Different Radii



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl,pst-calculate}

          begin{document}
          foreach x in {4,4.5,...,6.0}{%
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
          psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){pscalculate{x/2}}
          pscircle(Q){pscalculate{(8-x)/2}}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
          endpspicture}
          end{document}


          enter image description here






          share|improve this answer














          A PSTricks solution only for comparison purposes.



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl}
          begin{document}
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
          psCircleTangents(P){2}(Q){2}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){2}
          pscircle(Q){2}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
          endpspicture
          end{document}


          enter image description here



          Different Radii



          documentclass[pstricks,border=12pt,12pt]{standalone}
          usepackage{pstricks-add,pst-eucl,pst-calculate}

          begin{document}
          foreach x in {4,4.5,...,6.0}{%
          pspicture[PointName=none,PointSymbol=none](8,8)
          pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
          psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
          pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
          pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
          pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
          pcline[nodesep=-2](CircleTO1)(CircleTO2)
          psframe(D|B)
          psline(A)(B)
          psline(C)(D)
          pscircle(P){pscalculate{x/2}}
          pscircle(Q){pscalculate{(8-x)/2}}
          rput(A|D){psframe(12pt,12pt)}
          rput{90}(D){psframe(12pt,12pt)}
          rput{-90}(B){psframe(12pt,12pt)}
          rput{180}(D|B){psframe(12pt,12pt)}
          rput(Q|P){$S_x$}
          pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
          pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
          endpspicture}
          end{document}


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 11 hours ago

























          answered 13 hours ago









          Artificial Stupidity

          4,64611039




          4,64611039












          • @marmot In the original question, the radii are different.
            – blackened
            11 hours ago


















          • @marmot In the original question, the radii are different.
            – blackened
            11 hours ago
















          @marmot In the original question, the radii are different.
          – blackened
          11 hours ago




          @marmot In the original question, the radii are different.
          – blackened
          11 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464139%2ftikz-the-common-tangent-and-the-shaded-region%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei