a basic definite integration and its result used in evaluating limit
$begingroup$
Question :
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n^2-2ncos t+1)dt , ngeq1 $
then , find :
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}$
my attempt:
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n-e^{it})dt+displaystyleint _{0}^{2pi}log(n-e^{-it})dt $
$mathbfOmega(n)=2displaystyleint _{0}^{2pi} log n dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{it}}{n}right)dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{-it}}{n}right)dt$
$mathbfOmega(n)=2pi log n-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{ikt}}{k n^k}dt-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{-ikt}}{k n^k}dt$
changing order of summation and integration
$mathbfOmega(n)=2pi log n -displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{ikt}dt - displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{-ikt}dt$
both integrals becomes zero becuase they are integration over a period of sinusoid
$mathbfOmega(n)=2pi log n $
therefore,
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}=displaystyle lim_{n to infty} left(1+dfrac{log n}{2}right)^{log(n+1)}$
after this step, i don't know how to proceed to find final answer. my integral might be wrong so, please help me re-evaluate if possible and also help me find limit
thanks in advance
integration complex-analysis definite-integrals contest-math complex-integration
$endgroup$
add a comment |
$begingroup$
Question :
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n^2-2ncos t+1)dt , ngeq1 $
then , find :
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}$
my attempt:
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n-e^{it})dt+displaystyleint _{0}^{2pi}log(n-e^{-it})dt $
$mathbfOmega(n)=2displaystyleint _{0}^{2pi} log n dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{it}}{n}right)dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{-it}}{n}right)dt$
$mathbfOmega(n)=2pi log n-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{ikt}}{k n^k}dt-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{-ikt}}{k n^k}dt$
changing order of summation and integration
$mathbfOmega(n)=2pi log n -displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{ikt}dt - displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{-ikt}dt$
both integrals becomes zero becuase they are integration over a period of sinusoid
$mathbfOmega(n)=2pi log n $
therefore,
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}=displaystyle lim_{n to infty} left(1+dfrac{log n}{2}right)^{log(n+1)}$
after this step, i don't know how to proceed to find final answer. my integral might be wrong so, please help me re-evaluate if possible and also help me find limit
thanks in advance
integration complex-analysis definite-integrals contest-math complex-integration
$endgroup$
add a comment |
$begingroup$
Question :
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n^2-2ncos t+1)dt , ngeq1 $
then , find :
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}$
my attempt:
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n-e^{it})dt+displaystyleint _{0}^{2pi}log(n-e^{-it})dt $
$mathbfOmega(n)=2displaystyleint _{0}^{2pi} log n dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{it}}{n}right)dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{-it}}{n}right)dt$
$mathbfOmega(n)=2pi log n-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{ikt}}{k n^k}dt-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{-ikt}}{k n^k}dt$
changing order of summation and integration
$mathbfOmega(n)=2pi log n -displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{ikt}dt - displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{-ikt}dt$
both integrals becomes zero becuase they are integration over a period of sinusoid
$mathbfOmega(n)=2pi log n $
therefore,
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}=displaystyle lim_{n to infty} left(1+dfrac{log n}{2}right)^{log(n+1)}$
after this step, i don't know how to proceed to find final answer. my integral might be wrong so, please help me re-evaluate if possible and also help me find limit
thanks in advance
integration complex-analysis definite-integrals contest-math complex-integration
$endgroup$
Question :
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n^2-2ncos t+1)dt , ngeq1 $
then , find :
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}$
my attempt:
$mathbfOmega(n)=displaystyleint _{0}^{2pi}log(n-e^{it})dt+displaystyleint _{0}^{2pi}log(n-e^{-it})dt $
$mathbfOmega(n)=2displaystyleint _{0}^{2pi} log n dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{it}}{n}right)dt+displaystyle int_{0}^{2pi}logleft(1-dfrac{e^{-it}}{n}right)dt$
$mathbfOmega(n)=2pi log n-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{ikt}}{k n^k}dt-displaystyle int_{0}^{2pi}displaystyle sum_{k=1}^{infty} dfrac{e^{-ikt}}{k n^k}dt$
changing order of summation and integration
$mathbfOmega(n)=2pi log n -displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{ikt}dt - displaystyle sum_{k=1}^{infty}dfrac{1}{kn^k}displaystyle int_{0}^{2pi}e^{-ikt}dt$
both integrals becomes zero becuase they are integration over a period of sinusoid
$mathbfOmega(n)=2pi log n $
therefore,
$displaystyle lim_{n to infty} left(1+dfrac{mathbf Omega(n)}{4pi}right)^{log(n+1)}=displaystyle lim_{n to infty} left(1+dfrac{log n}{2}right)^{log(n+1)}$
after this step, i don't know how to proceed to find final answer. my integral might be wrong so, please help me re-evaluate if possible and also help me find limit
thanks in advance
integration complex-analysis definite-integrals contest-math complex-integration
integration complex-analysis definite-integrals contest-math complex-integration
edited Dec 6 '18 at 17:12
Arturo Magidin
262k34586909
262k34586909
asked Dec 6 '18 at 15:17
deleteprofiledeleteprofile
1,153316
1,153316
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You don't really need to calculate $Omega(n)$.
Note that $Omega(n)geq clog n$ for some $c>0$ and all sufficiently large $n$ (e.g., from bounding the integrand $log(n^2-2nlog t+1)$ by $2log(n-1)$), so $(1+Omega(n)/(4pi))^{log(n+1)}$ is of the form $infty^infty$ so must $toinfty$ as $ntoinfty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028618%2fa-basic-definite-integration-and-its-result-used-in-evaluating-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You don't really need to calculate $Omega(n)$.
Note that $Omega(n)geq clog n$ for some $c>0$ and all sufficiently large $n$ (e.g., from bounding the integrand $log(n^2-2nlog t+1)$ by $2log(n-1)$), so $(1+Omega(n)/(4pi))^{log(n+1)}$ is of the form $infty^infty$ so must $toinfty$ as $ntoinfty$.
$endgroup$
add a comment |
$begingroup$
You don't really need to calculate $Omega(n)$.
Note that $Omega(n)geq clog n$ for some $c>0$ and all sufficiently large $n$ (e.g., from bounding the integrand $log(n^2-2nlog t+1)$ by $2log(n-1)$), so $(1+Omega(n)/(4pi))^{log(n+1)}$ is of the form $infty^infty$ so must $toinfty$ as $ntoinfty$.
$endgroup$
add a comment |
$begingroup$
You don't really need to calculate $Omega(n)$.
Note that $Omega(n)geq clog n$ for some $c>0$ and all sufficiently large $n$ (e.g., from bounding the integrand $log(n^2-2nlog t+1)$ by $2log(n-1)$), so $(1+Omega(n)/(4pi))^{log(n+1)}$ is of the form $infty^infty$ so must $toinfty$ as $ntoinfty$.
$endgroup$
You don't really need to calculate $Omega(n)$.
Note that $Omega(n)geq clog n$ for some $c>0$ and all sufficiently large $n$ (e.g., from bounding the integrand $log(n^2-2nlog t+1)$ by $2log(n-1)$), so $(1+Omega(n)/(4pi))^{log(n+1)}$ is of the form $infty^infty$ so must $toinfty$ as $ntoinfty$.
answered Dec 6 '18 at 17:59
user10354138user10354138
7,3872925
7,3872925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028618%2fa-basic-definite-integration-and-its-result-used-in-evaluating-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown