Let $x$ and $y$ be real numbers. If $xy=0,$ then $x=0$ or $y=0.$
$begingroup$
When solving this proof would it be okay to say
Proof: Let $x,y in mathbb{R}.$ We will do a proof by case
- Case 1. If $x=0,$ then $xy=0y=0$
- Case 2. If $y=0,$ then $xy=0x=0$
In each case, $xy=0.$
Or would you prove by contradiction saying:
If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.
Then $frac{1}{xy}xy=0frac{1}{xy}.$
$1=0$ which is a contradiction.
proof-verification
$endgroup$
add a comment |
$begingroup$
When solving this proof would it be okay to say
Proof: Let $x,y in mathbb{R}.$ We will do a proof by case
- Case 1. If $x=0,$ then $xy=0y=0$
- Case 2. If $y=0,$ then $xy=0x=0$
In each case, $xy=0.$
Or would you prove by contradiction saying:
If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.
Then $frac{1}{xy}xy=0frac{1}{xy}.$
$1=0$ which is a contradiction.
proof-verification
$endgroup$
add a comment |
$begingroup$
When solving this proof would it be okay to say
Proof: Let $x,y in mathbb{R}.$ We will do a proof by case
- Case 1. If $x=0,$ then $xy=0y=0$
- Case 2. If $y=0,$ then $xy=0x=0$
In each case, $xy=0.$
Or would you prove by contradiction saying:
If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.
Then $frac{1}{xy}xy=0frac{1}{xy}.$
$1=0$ which is a contradiction.
proof-verification
$endgroup$
When solving this proof would it be okay to say
Proof: Let $x,y in mathbb{R}.$ We will do a proof by case
- Case 1. If $x=0,$ then $xy=0y=0$
- Case 2. If $y=0,$ then $xy=0x=0$
In each case, $xy=0.$
Or would you prove by contradiction saying:
If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.
Then $frac{1}{xy}xy=0frac{1}{xy}.$
$1=0$ which is a contradiction.
proof-verification
proof-verification
edited Dec 6 '18 at 23:40
user376343
3,3933826
3,3933826
asked Dec 6 '18 at 15:40
caroline drummondcaroline drummond
105
105
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Proving by cases is a valid way.
Case I: when only $x=0$
Case II: when only $y=0$,
Case III: when both $x=0$ and $y=0$.
$endgroup$
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
add a comment |
$begingroup$
For a complete proof we can consider four cases
- $x=0 land yneq 0$
- $y=0 land xneq 0$
- $x=0 land y=0$
- $xneq 0 land yneq 0$
to conclude that
$$xy=0 iff x=0 quad lor quad y=0$$
and then of course
$$xy=0 implies x=0 quad lor quad y=0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028642%2flet-x-and-y-be-real-numbers-if-xy-0-then-x-0-or-y-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Proving by cases is a valid way.
Case I: when only $x=0$
Case II: when only $y=0$,
Case III: when both $x=0$ and $y=0$.
$endgroup$
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
add a comment |
$begingroup$
Proving by cases is a valid way.
Case I: when only $x=0$
Case II: when only $y=0$,
Case III: when both $x=0$ and $y=0$.
$endgroup$
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
add a comment |
$begingroup$
Proving by cases is a valid way.
Case I: when only $x=0$
Case II: when only $y=0$,
Case III: when both $x=0$ and $y=0$.
$endgroup$
Proving by cases is a valid way.
Case I: when only $x=0$
Case II: when only $y=0$,
Case III: when both $x=0$ and $y=0$.
answered Dec 6 '18 at 15:42
Hussain-AlqatariHussain-Alqatari
3187
3187
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
add a comment |
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
$begingroup$
But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
$endgroup$
– gimusi
Dec 6 '18 at 15:49
add a comment |
$begingroup$
For a complete proof we can consider four cases
- $x=0 land yneq 0$
- $y=0 land xneq 0$
- $x=0 land y=0$
- $xneq 0 land yneq 0$
to conclude that
$$xy=0 iff x=0 quad lor quad y=0$$
and then of course
$$xy=0 implies x=0 quad lor quad y=0$$
$endgroup$
add a comment |
$begingroup$
For a complete proof we can consider four cases
- $x=0 land yneq 0$
- $y=0 land xneq 0$
- $x=0 land y=0$
- $xneq 0 land yneq 0$
to conclude that
$$xy=0 iff x=0 quad lor quad y=0$$
and then of course
$$xy=0 implies x=0 quad lor quad y=0$$
$endgroup$
add a comment |
$begingroup$
For a complete proof we can consider four cases
- $x=0 land yneq 0$
- $y=0 land xneq 0$
- $x=0 land y=0$
- $xneq 0 land yneq 0$
to conclude that
$$xy=0 iff x=0 quad lor quad y=0$$
and then of course
$$xy=0 implies x=0 quad lor quad y=0$$
$endgroup$
For a complete proof we can consider four cases
- $x=0 land yneq 0$
- $y=0 land xneq 0$
- $x=0 land y=0$
- $xneq 0 land yneq 0$
to conclude that
$$xy=0 iff x=0 quad lor quad y=0$$
and then of course
$$xy=0 implies x=0 quad lor quad y=0$$
answered Dec 6 '18 at 15:45
gimusigimusi
92.8k84494
92.8k84494
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028642%2flet-x-and-y-be-real-numbers-if-xy-0-then-x-0-or-y-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown