Let $x$ and $y$ be real numbers. If $xy=0,$ then $x=0$ or $y=0.$












-2












$begingroup$


When solving this proof would it be okay to say



Proof: Let $x,y in mathbb{R}.$ We will do a proof by case




  • Case 1. If $x=0,$ then $xy=0y=0$

  • Case 2. If $y=0,$ then $xy=0x=0$


In each case, $xy=0.$



Or would you prove by contradiction saying:



If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.



Then $frac{1}{xy}xy=0frac{1}{xy}.$



$1=0$ which is a contradiction.










share|cite|improve this question











$endgroup$

















    -2












    $begingroup$


    When solving this proof would it be okay to say



    Proof: Let $x,y in mathbb{R}.$ We will do a proof by case




    • Case 1. If $x=0,$ then $xy=0y=0$

    • Case 2. If $y=0,$ then $xy=0x=0$


    In each case, $xy=0.$



    Or would you prove by contradiction saying:



    If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.



    Then $frac{1}{xy}xy=0frac{1}{xy}.$



    $1=0$ which is a contradiction.










    share|cite|improve this question











    $endgroup$















      -2












      -2








      -2


      0



      $begingroup$


      When solving this proof would it be okay to say



      Proof: Let $x,y in mathbb{R}.$ We will do a proof by case




      • Case 1. If $x=0,$ then $xy=0y=0$

      • Case 2. If $y=0,$ then $xy=0x=0$


      In each case, $xy=0.$



      Or would you prove by contradiction saying:



      If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.



      Then $frac{1}{xy}xy=0frac{1}{xy}.$



      $1=0$ which is a contradiction.










      share|cite|improve this question











      $endgroup$




      When solving this proof would it be okay to say



      Proof: Let $x,y in mathbb{R}.$ We will do a proof by case




      • Case 1. If $x=0,$ then $xy=0y=0$

      • Case 2. If $y=0,$ then $xy=0x=0$


      In each case, $xy=0.$



      Or would you prove by contradiction saying:



      If $xneq0$ and $yneq0$ so $x^{-1}$ and $y^{-1}$ must exist.



      Then $frac{1}{xy}xy=0frac{1}{xy}.$



      $1=0$ which is a contradiction.







      proof-verification






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 6 '18 at 23:40









      user376343

      3,3933826




      3,3933826










      asked Dec 6 '18 at 15:40









      caroline drummondcaroline drummond

      105




      105






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Proving by cases is a valid way.



          Case I: when only $x=0$



          Case II: when only $y=0$,



          Case III: when both $x=0$ and $y=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
            $endgroup$
            – gimusi
            Dec 6 '18 at 15:49





















          0












          $begingroup$

          For a complete proof we can consider four cases




          • $x=0 land yneq 0$

          • $y=0 land xneq 0$

          • $x=0 land y=0$

          • $xneq 0 land yneq 0$


          to conclude that



          $$xy=0 iff x=0 quad lor quad y=0$$



          and then of course



          $$xy=0 implies x=0 quad lor quad y=0$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028642%2flet-x-and-y-be-real-numbers-if-xy-0-then-x-0-or-y-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Proving by cases is a valid way.



            Case I: when only $x=0$



            Case II: when only $y=0$,



            Case III: when both $x=0$ and $y=0$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
              $endgroup$
              – gimusi
              Dec 6 '18 at 15:49


















            0












            $begingroup$

            Proving by cases is a valid way.



            Case I: when only $x=0$



            Case II: when only $y=0$,



            Case III: when both $x=0$ and $y=0$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
              $endgroup$
              – gimusi
              Dec 6 '18 at 15:49
















            0












            0








            0





            $begingroup$

            Proving by cases is a valid way.



            Case I: when only $x=0$



            Case II: when only $y=0$,



            Case III: when both $x=0$ and $y=0$.






            share|cite|improve this answer









            $endgroup$



            Proving by cases is a valid way.



            Case I: when only $x=0$



            Case II: when only $y=0$,



            Case III: when both $x=0$ and $y=0$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 6 '18 at 15:42









            Hussain-AlqatariHussain-Alqatari

            3187




            3187












            • $begingroup$
              But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
              $endgroup$
              – gimusi
              Dec 6 '18 at 15:49




















            • $begingroup$
              But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
              $endgroup$
              – gimusi
              Dec 6 '18 at 15:49


















            $begingroup$
            But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
            $endgroup$
            – gimusi
            Dec 6 '18 at 15:49






            $begingroup$
            But in that way we prove that $$x=0 quad lor quad y=0 implies xy=0$$
            $endgroup$
            – gimusi
            Dec 6 '18 at 15:49













            0












            $begingroup$

            For a complete proof we can consider four cases




            • $x=0 land yneq 0$

            • $y=0 land xneq 0$

            • $x=0 land y=0$

            • $xneq 0 land yneq 0$


            to conclude that



            $$xy=0 iff x=0 quad lor quad y=0$$



            and then of course



            $$xy=0 implies x=0 quad lor quad y=0$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              For a complete proof we can consider four cases




              • $x=0 land yneq 0$

              • $y=0 land xneq 0$

              • $x=0 land y=0$

              • $xneq 0 land yneq 0$


              to conclude that



              $$xy=0 iff x=0 quad lor quad y=0$$



              and then of course



              $$xy=0 implies x=0 quad lor quad y=0$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                For a complete proof we can consider four cases




                • $x=0 land yneq 0$

                • $y=0 land xneq 0$

                • $x=0 land y=0$

                • $xneq 0 land yneq 0$


                to conclude that



                $$xy=0 iff x=0 quad lor quad y=0$$



                and then of course



                $$xy=0 implies x=0 quad lor quad y=0$$






                share|cite|improve this answer









                $endgroup$



                For a complete proof we can consider four cases




                • $x=0 land yneq 0$

                • $y=0 land xneq 0$

                • $x=0 land y=0$

                • $xneq 0 land yneq 0$


                to conclude that



                $$xy=0 iff x=0 quad lor quad y=0$$



                and then of course



                $$xy=0 implies x=0 quad lor quad y=0$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 6 '18 at 15:45









                gimusigimusi

                92.8k84494




                92.8k84494






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028642%2flet-x-and-y-be-real-numbers-if-xy-0-then-x-0-or-y-0%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei