Contradiction Observation to Cauchy Schwarz inequality for inequalty












-1












$begingroup$



$f:[0,1]to mathbb R$ , be continuous function then prove that
$$int_0^1f^2(x)dxgeq biggl(int_0^1|f(x)| biggr) ^2$$




I tried this for $x^2$



For that above is true



But I checked following proof Which is complete opposite to above.
Proving the Cauchy-Schwarz integral inequality in a different way



Please help me to find that where is I am making wrong ?



Any help will be appreciated










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's not? Just let $g=1$ for your result.
    $endgroup$
    – Zachary Selk
    Dec 6 '18 at 15:19
















-1












$begingroup$



$f:[0,1]to mathbb R$ , be continuous function then prove that
$$int_0^1f^2(x)dxgeq biggl(int_0^1|f(x)| biggr) ^2$$




I tried this for $x^2$



For that above is true



But I checked following proof Which is complete opposite to above.
Proving the Cauchy-Schwarz integral inequality in a different way



Please help me to find that where is I am making wrong ?



Any help will be appreciated










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's not? Just let $g=1$ for your result.
    $endgroup$
    – Zachary Selk
    Dec 6 '18 at 15:19














-1












-1








-1





$begingroup$



$f:[0,1]to mathbb R$ , be continuous function then prove that
$$int_0^1f^2(x)dxgeq biggl(int_0^1|f(x)| biggr) ^2$$




I tried this for $x^2$



For that above is true



But I checked following proof Which is complete opposite to above.
Proving the Cauchy-Schwarz integral inequality in a different way



Please help me to find that where is I am making wrong ?



Any help will be appreciated










share|cite|improve this question











$endgroup$





$f:[0,1]to mathbb R$ , be continuous function then prove that
$$int_0^1f^2(x)dxgeq biggl(int_0^1|f(x)| biggr) ^2$$




I tried this for $x^2$



For that above is true



But I checked following proof Which is complete opposite to above.
Proving the Cauchy-Schwarz integral inequality in a different way



Please help me to find that where is I am making wrong ?



Any help will be appreciated







real-analysis analysis cauchy-schwarz-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 6 '18 at 15:37









José Carlos Santos

157k22126227




157k22126227










asked Dec 6 '18 at 15:15









MathLoverMathLover

49710




49710












  • $begingroup$
    It's not? Just let $g=1$ for your result.
    $endgroup$
    – Zachary Selk
    Dec 6 '18 at 15:19


















  • $begingroup$
    It's not? Just let $g=1$ for your result.
    $endgroup$
    – Zachary Selk
    Dec 6 '18 at 15:19
















$begingroup$
It's not? Just let $g=1$ for your result.
$endgroup$
– Zachary Selk
Dec 6 '18 at 15:19




$begingroup$
It's not? Just let $g=1$ for your result.
$endgroup$
– Zachary Selk
Dec 6 '18 at 15:19










1 Answer
1






active

oldest

votes


















1












$begingroup$

The inequality that you wrote is not related to the Cauchy-Schwartz inequality. This last inequality states (in this context) that, if $f,gin C^1bigl([0,1]bigr)$, then$$left(int_0^1f(x)g(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)left(int_0^1g^2(x),mathrm dxright).$$If you choose $g=f$, you get the trivial inequality$$left(int_0^1f^2(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)^2$$or$$int_0^1f^2(x),mathrm dxleqslantint_0^1f^2(x),mathrm dx.$$This in no way contradicts what you are supposed to prove.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    ohh I am applying wrong result. Thanks A lot .You are always helping me.
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:37










  • $begingroup$
    ohh Sorry Sir I forget....
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:40










  • $begingroup$
    Sir ,Please can you give some hint so that I can prove above theorem
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:43










  • $begingroup$
    Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
    $endgroup$
    – José Carlos Santos
    Dec 6 '18 at 15:45










  • $begingroup$
    Thanks a lots Sir...
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:47











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028616%2fcontradiction-observation-to-cauchy-schwarz-inequality-for-inequalty%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

The inequality that you wrote is not related to the Cauchy-Schwartz inequality. This last inequality states (in this context) that, if $f,gin C^1bigl([0,1]bigr)$, then$$left(int_0^1f(x)g(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)left(int_0^1g^2(x),mathrm dxright).$$If you choose $g=f$, you get the trivial inequality$$left(int_0^1f^2(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)^2$$or$$int_0^1f^2(x),mathrm dxleqslantint_0^1f^2(x),mathrm dx.$$This in no way contradicts what you are supposed to prove.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    ohh I am applying wrong result. Thanks A lot .You are always helping me.
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:37










  • $begingroup$
    ohh Sorry Sir I forget....
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:40










  • $begingroup$
    Sir ,Please can you give some hint so that I can prove above theorem
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:43










  • $begingroup$
    Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
    $endgroup$
    – José Carlos Santos
    Dec 6 '18 at 15:45










  • $begingroup$
    Thanks a lots Sir...
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:47
















1












$begingroup$

The inequality that you wrote is not related to the Cauchy-Schwartz inequality. This last inequality states (in this context) that, if $f,gin C^1bigl([0,1]bigr)$, then$$left(int_0^1f(x)g(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)left(int_0^1g^2(x),mathrm dxright).$$If you choose $g=f$, you get the trivial inequality$$left(int_0^1f^2(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)^2$$or$$int_0^1f^2(x),mathrm dxleqslantint_0^1f^2(x),mathrm dx.$$This in no way contradicts what you are supposed to prove.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    ohh I am applying wrong result. Thanks A lot .You are always helping me.
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:37










  • $begingroup$
    ohh Sorry Sir I forget....
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:40










  • $begingroup$
    Sir ,Please can you give some hint so that I can prove above theorem
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:43










  • $begingroup$
    Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
    $endgroup$
    – José Carlos Santos
    Dec 6 '18 at 15:45










  • $begingroup$
    Thanks a lots Sir...
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:47














1












1








1





$begingroup$

The inequality that you wrote is not related to the Cauchy-Schwartz inequality. This last inequality states (in this context) that, if $f,gin C^1bigl([0,1]bigr)$, then$$left(int_0^1f(x)g(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)left(int_0^1g^2(x),mathrm dxright).$$If you choose $g=f$, you get the trivial inequality$$left(int_0^1f^2(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)^2$$or$$int_0^1f^2(x),mathrm dxleqslantint_0^1f^2(x),mathrm dx.$$This in no way contradicts what you are supposed to prove.






share|cite|improve this answer









$endgroup$



The inequality that you wrote is not related to the Cauchy-Schwartz inequality. This last inequality states (in this context) that, if $f,gin C^1bigl([0,1]bigr)$, then$$left(int_0^1f(x)g(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)left(int_0^1g^2(x),mathrm dxright).$$If you choose $g=f$, you get the trivial inequality$$left(int_0^1f^2(x),mathrm dxright)^2leqslantleft(int_0^1f^2(x),mathrm dxright)^2$$or$$int_0^1f^2(x),mathrm dxleqslantint_0^1f^2(x),mathrm dx.$$This in no way contradicts what you are supposed to prove.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 6 '18 at 15:34









José Carlos SantosJosé Carlos Santos

157k22126227




157k22126227












  • $begingroup$
    ohh I am applying wrong result. Thanks A lot .You are always helping me.
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:37










  • $begingroup$
    ohh Sorry Sir I forget....
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:40










  • $begingroup$
    Sir ,Please can you give some hint so that I can prove above theorem
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:43










  • $begingroup$
    Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
    $endgroup$
    – José Carlos Santos
    Dec 6 '18 at 15:45










  • $begingroup$
    Thanks a lots Sir...
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:47


















  • $begingroup$
    ohh I am applying wrong result. Thanks A lot .You are always helping me.
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:37










  • $begingroup$
    ohh Sorry Sir I forget....
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:40










  • $begingroup$
    Sir ,Please can you give some hint so that I can prove above theorem
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:43










  • $begingroup$
    Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
    $endgroup$
    – José Carlos Santos
    Dec 6 '18 at 15:45










  • $begingroup$
    Thanks a lots Sir...
    $endgroup$
    – MathLover
    Dec 6 '18 at 15:47
















$begingroup$
ohh I am applying wrong result. Thanks A lot .You are always helping me.
$endgroup$
– MathLover
Dec 6 '18 at 15:37




$begingroup$
ohh I am applying wrong result. Thanks A lot .You are always helping me.
$endgroup$
– MathLover
Dec 6 '18 at 15:37












$begingroup$
ohh Sorry Sir I forget....
$endgroup$
– MathLover
Dec 6 '18 at 15:40




$begingroup$
ohh Sorry Sir I forget....
$endgroup$
– MathLover
Dec 6 '18 at 15:40












$begingroup$
Sir ,Please can you give some hint so that I can prove above theorem
$endgroup$
– MathLover
Dec 6 '18 at 15:43




$begingroup$
Sir ,Please can you give some hint so that I can prove above theorem
$endgroup$
– MathLover
Dec 6 '18 at 15:43












$begingroup$
Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
$endgroup$
– José Carlos Santos
Dec 6 '18 at 15:45




$begingroup$
Apply the Cauchy-Schwarz inequality to the functions $lvert frvert$ and $1$.
$endgroup$
– José Carlos Santos
Dec 6 '18 at 15:45












$begingroup$
Thanks a lots Sir...
$endgroup$
– MathLover
Dec 6 '18 at 15:47




$begingroup$
Thanks a lots Sir...
$endgroup$
– MathLover
Dec 6 '18 at 15:47


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028616%2fcontradiction-observation-to-cauchy-schwarz-inequality-for-inequalty%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei