Can a linear isometry always be expressed in terms of an orthogonal matrix?












1












$begingroup$


Is the following true?



Let $S: mathbb{R}^n to mathbb{R}^n$ be a linear transformation such that $||S(v)|| = ||v|| text{for all} v in mathbb{R}^n$, where $||cdot||$ denotes the Euclidean norm. Then, for some $A in O(n)$ and for all $v in mathbb{R}^n$, we have $S(v) = Av$. Here $O(n)$ denotes the set of all orthogonal $n times n$ matrices.



If so, how can one prove it?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Is the following true?



    Let $S: mathbb{R}^n to mathbb{R}^n$ be a linear transformation such that $||S(v)|| = ||v|| text{for all} v in mathbb{R}^n$, where $||cdot||$ denotes the Euclidean norm. Then, for some $A in O(n)$ and for all $v in mathbb{R}^n$, we have $S(v) = Av$. Here $O(n)$ denotes the set of all orthogonal $n times n$ matrices.



    If so, how can one prove it?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Is the following true?



      Let $S: mathbb{R}^n to mathbb{R}^n$ be a linear transformation such that $||S(v)|| = ||v|| text{for all} v in mathbb{R}^n$, where $||cdot||$ denotes the Euclidean norm. Then, for some $A in O(n)$ and for all $v in mathbb{R}^n$, we have $S(v) = Av$. Here $O(n)$ denotes the set of all orthogonal $n times n$ matrices.



      If so, how can one prove it?










      share|cite|improve this question









      $endgroup$




      Is the following true?



      Let $S: mathbb{R}^n to mathbb{R}^n$ be a linear transformation such that $||S(v)|| = ||v|| text{for all} v in mathbb{R}^n$, where $||cdot||$ denotes the Euclidean norm. Then, for some $A in O(n)$ and for all $v in mathbb{R}^n$, we have $S(v) = Av$. Here $O(n)$ denotes the set of all orthogonal $n times n$ matrices.



      If so, how can one prove it?







      linear-algebra linear-transformations orthogonal-matrices






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 6 '18 at 16:10









      E-muE-mu

      786417




      786417






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Let $A$ be the matrix of $S$. Since $langle u,vrangle=frac14lVert u+vrVert^2-frac14lVert u-vrVert^2$, we have that $langle Au,Avrangle=langle u,vrangle$ for all $u,v$. Id est, $u^t(A^tA)v=(Au)^t(Av)=u^tv=u^tIv$ for all $u,v$. Since $e_i^tXe_j=X_{ij}$, that identity implies $A^tA=I$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028687%2fcan-a-linear-isometry-always-be-expressed-in-terms-of-an-orthogonal-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Let $A$ be the matrix of $S$. Since $langle u,vrangle=frac14lVert u+vrVert^2-frac14lVert u-vrVert^2$, we have that $langle Au,Avrangle=langle u,vrangle$ for all $u,v$. Id est, $u^t(A^tA)v=(Au)^t(Av)=u^tv=u^tIv$ for all $u,v$. Since $e_i^tXe_j=X_{ij}$, that identity implies $A^tA=I$.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Let $A$ be the matrix of $S$. Since $langle u,vrangle=frac14lVert u+vrVert^2-frac14lVert u-vrVert^2$, we have that $langle Au,Avrangle=langle u,vrangle$ for all $u,v$. Id est, $u^t(A^tA)v=(Au)^t(Av)=u^tv=u^tIv$ for all $u,v$. Since $e_i^tXe_j=X_{ij}$, that identity implies $A^tA=I$.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Let $A$ be the matrix of $S$. Since $langle u,vrangle=frac14lVert u+vrVert^2-frac14lVert u-vrVert^2$, we have that $langle Au,Avrangle=langle u,vrangle$ for all $u,v$. Id est, $u^t(A^tA)v=(Au)^t(Av)=u^tv=u^tIv$ for all $u,v$. Since $e_i^tXe_j=X_{ij}$, that identity implies $A^tA=I$.






                share|cite|improve this answer









                $endgroup$



                Let $A$ be the matrix of $S$. Since $langle u,vrangle=frac14lVert u+vrVert^2-frac14lVert u-vrVert^2$, we have that $langle Au,Avrangle=langle u,vrangle$ for all $u,v$. Id est, $u^t(A^tA)v=(Au)^t(Av)=u^tv=u^tIv$ for all $u,v$. Since $e_i^tXe_j=X_{ij}$, that identity implies $A^tA=I$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 6 '18 at 16:19









                Saucy O'PathSaucy O'Path

                5,8641626




                5,8641626






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028687%2fcan-a-linear-isometry-always-be-expressed-in-terms-of-an-orthogonal-matrix%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei