Bureau politique

Multi tool use

Pour les articles homonymes, voir BP.
Le bureau politique (parfois abrégé BP) est le premier conseil de certains partis politiques.
La traduction russe de bureau politique, abrégée en Politburo, est associée aux partis communistes, notamment ceux au pouvoir dans les régimes communistes, où ils constituent l'une des principales autorités de l'État.
Politburo du Parti communiste de l'Union soviétique ;
Politburo du Parti communiste chinois ;
Politburo de l'Armée Nord-coréenne.
Le terme existe également au sein de quelques partis politiques des pays démocratiques (en France au sein de tous les partis).
Reprise du terme |
.mw-parser-output .autres-projets ul{margin:0;padding:0}.mw-parser-output .autres-projets li{list-style-type:none;list-style-image:none;margin:0.2em 0;text-indent:0;padding-left:24px;min-height:20px;text-align:left}.mw-parser-output .autres-projets .titre{text-align:center;margin:0.2em 0}.mw-parser-output .autres-projets li a{font-style:italic}
Sur les autres projets Wikimedia :
politique, sur le Wiktionnaire
L'expression Politburo a également été utilisée pour désigner des organes décisionnels jouant la même fonction que le Politburo du PCUS. Le terme est volontiers utilisé avec une connotation négative, notamment à l'encontre de partis communistes ou d'extrême-gauche modernes, afin de mettre en relief les parallèles avec le système soviétique.
Notes et références |
Portail de la politique
OReB9PqGR
Popular posts from this blog
Pour une classification, voir Orthoptera (classification phylogénétique). Orthoptera Romalea guttata , Orthoptera Caelifera Classification Règne Animalia Embranchement Arthropoda Sous-embr. Hexapoda Classe Insecta Sous-classe Dicondylia Infra-classe Pterygota Division Neoptera Super-ordre Orthopterodea Ordre Orthoptera Latreille, 1793 Les orthoptères ou Orthoptera (du grec orthos , droit, et ptéron , aile) sont un ordre de la classe des insectes. Ces animaux se caractérisent par des ailes alignées avec le corps. On estime à 22 000 le nombre d'espèces présentes sur la planète. La grande majorité est phytophage (qui se nourrit de végétaux) bien que plusieurs espèces soient régulièrement prédatrices. Cet ordre est scindé en deux sous-ordres : les ensifères (grillons et sauterelles) et les caelifères (criquets). Sommaire 1 Distribution 2 Description 2.1 Morphologie 2.2 Régime alimentai...
Pour les articles homonymes, voir Ellipse. L'ellipse est le lieu des points dont la somme des distances à deux points fixes, dits foyers, est constante. Section du cône ou projection du cercle. En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1. On peut également la définir comme le lieu des points dont la somme des distances à deux points fixes, dits foyers, est constante (sa construction par la méthode du jardinier est très simple). Dans la vie courante, l’ellipse est la forme qu'on perçoit en regardant un cercle en perspective, ou la figure formée par l’ombre d'un disque sur une surface plane. On retrouve aussi, en première approximation [ 1 ] , des ellipses dans les trajectoires des corps célestes (planètes, comètes ou satellites arti...
up vote
0
down vote
favorite
I have $99$ identical square tiles, each with a quarter-circle drawn on it like this: [asy] size(1.5cm); draw(Arc((2,0),1,90,180),red+1); draw((0,0)--(2,0)--(2,2)--(0,2)--(0,0)); [/asy] When I arrange the tiles in a $9times 11$ rectangular grid, each with a random orientation, what is the expected value of the number of full circles I form? I think this problem has to do with finding the chance any given 2x2 square has a circle, but I can't find it.
expected-value
share | cite | improve this question
asked Nov 20 at 15:03
6minecraftninja
1 2
...