Calculate inverse of matrix with -1 on diagonal and 1 on the rest
$begingroup$
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
$endgroup$
add a comment |
$begingroup$
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
$endgroup$
$begingroup$
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
$endgroup$
– StubbornAtom
Nov 30 '18 at 18:50
add a comment |
$begingroup$
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
$endgroup$
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
matrices inverse
asked Nov 30 '18 at 18:34
SADBOYSSADBOYS
4288
4288
$begingroup$
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
$endgroup$
– StubbornAtom
Nov 30 '18 at 18:50
add a comment |
$begingroup$
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
$endgroup$
– StubbornAtom
Nov 30 '18 at 18:50
$begingroup$
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
$endgroup$
– StubbornAtom
Nov 30 '18 at 18:50
$begingroup$
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
$endgroup$
– StubbornAtom
Nov 30 '18 at 18:50
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
$endgroup$
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
add a comment |
$begingroup$
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
$endgroup$
add a comment |
$begingroup$
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020465%2fcalculate-inverse-of-matrix-with-1-on-diagonal-and-1-on-the-rest%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
$endgroup$
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
add a comment |
$begingroup$
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
$endgroup$
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
add a comment |
$begingroup$
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
$endgroup$
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
answered Nov 30 '18 at 18:46
Siong Thye GohSiong Thye Goh
100k1465117
100k1465117
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
add a comment |
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
$begingroup$
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
$endgroup$
– SADBOYS
Nov 30 '18 at 22:56
add a comment |
$begingroup$
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
$endgroup$
add a comment |
$begingroup$
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
$endgroup$
add a comment |
$begingroup$
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
$endgroup$
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
edited Nov 30 '18 at 19:21
answered Nov 30 '18 at 19:04
Will JagyWill Jagy
102k5100199
102k5100199
add a comment |
add a comment |
$begingroup$
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
$endgroup$
add a comment |
$begingroup$
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
$endgroup$
add a comment |
$begingroup$
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
$endgroup$
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
answered Nov 30 '18 at 20:30
I like SerenaI like Serena
3,7471718
3,7471718
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020465%2fcalculate-inverse-of-matrix-with-1-on-diagonal-and-1-on-the-rest%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
$endgroup$
– StubbornAtom
Nov 30 '18 at 18:50