Is it true for any real $a$ and $b$ that if $a*b > 0$ => $a/b>0$?












-2












$begingroup$


Is it true for any real $a$ and $b$ that if $a*b > 0$ => $a/b>0$ ?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Multiply by $1/b^2$ for $bneq 0$.
    $endgroup$
    – Dietrich Burde
    Nov 30 '18 at 19:15
















-2












$begingroup$


Is it true for any real $a$ and $b$ that if $a*b > 0$ => $a/b>0$ ?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Multiply by $1/b^2$ for $bneq 0$.
    $endgroup$
    – Dietrich Burde
    Nov 30 '18 at 19:15














-2












-2








-2





$begingroup$


Is it true for any real $a$ and $b$ that if $a*b > 0$ => $a/b>0$ ?










share|cite|improve this question









$endgroup$




Is it true for any real $a$ and $b$ that if $a*b > 0$ => $a/b>0$ ?







inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 30 '18 at 19:12









caasdadscaasdads

1107




1107








  • 3




    $begingroup$
    Multiply by $1/b^2$ for $bneq 0$.
    $endgroup$
    – Dietrich Burde
    Nov 30 '18 at 19:15














  • 3




    $begingroup$
    Multiply by $1/b^2$ for $bneq 0$.
    $endgroup$
    – Dietrich Burde
    Nov 30 '18 at 19:15








3




3




$begingroup$
Multiply by $1/b^2$ for $bneq 0$.
$endgroup$
– Dietrich Burde
Nov 30 '18 at 19:15




$begingroup$
Multiply by $1/b^2$ for $bneq 0$.
$endgroup$
– Dietrich Burde
Nov 30 '18 at 19:15










2 Answers
2






active

oldest

votes


















0












$begingroup$

$bneq0$ because otherwise, from the given we obtain $0>0$, which is wrong.



Thus, $b^2>0$ and from the given again we obtain:
$$frac{a}{b}=frac{ab}{b^2}>0.$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $a,b not =0$, real.



    Assume $ab>0 Rightarrow a/b<0.$



    Then



    $(ab)(a/b)<0$



    (sign change since $(a/b) <0$).



    $a^2 <0.$



    Since $a$ real a contradiction.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020517%2fis-it-true-for-any-real-a-and-b-that-if-ab-0-a-b0%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      $bneq0$ because otherwise, from the given we obtain $0>0$, which is wrong.



      Thus, $b^2>0$ and from the given again we obtain:
      $$frac{a}{b}=frac{ab}{b^2}>0.$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        $bneq0$ because otherwise, from the given we obtain $0>0$, which is wrong.



        Thus, $b^2>0$ and from the given again we obtain:
        $$frac{a}{b}=frac{ab}{b^2}>0.$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          $bneq0$ because otherwise, from the given we obtain $0>0$, which is wrong.



          Thus, $b^2>0$ and from the given again we obtain:
          $$frac{a}{b}=frac{ab}{b^2}>0.$$






          share|cite|improve this answer









          $endgroup$



          $bneq0$ because otherwise, from the given we obtain $0>0$, which is wrong.



          Thus, $b^2>0$ and from the given again we obtain:
          $$frac{a}{b}=frac{ab}{b^2}>0.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 30 '18 at 19:31









          Michael RozenbergMichael Rozenberg

          97.8k1590188




          97.8k1590188























              0












              $begingroup$

              $a,b not =0$, real.



              Assume $ab>0 Rightarrow a/b<0.$



              Then



              $(ab)(a/b)<0$



              (sign change since $(a/b) <0$).



              $a^2 <0.$



              Since $a$ real a contradiction.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                $a,b not =0$, real.



                Assume $ab>0 Rightarrow a/b<0.$



                Then



                $(ab)(a/b)<0$



                (sign change since $(a/b) <0$).



                $a^2 <0.$



                Since $a$ real a contradiction.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $a,b not =0$, real.



                  Assume $ab>0 Rightarrow a/b<0.$



                  Then



                  $(ab)(a/b)<0$



                  (sign change since $(a/b) <0$).



                  $a^2 <0.$



                  Since $a$ real a contradiction.






                  share|cite|improve this answer











                  $endgroup$



                  $a,b not =0$, real.



                  Assume $ab>0 Rightarrow a/b<0.$



                  Then



                  $(ab)(a/b)<0$



                  (sign change since $(a/b) <0$).



                  $a^2 <0.$



                  Since $a$ real a contradiction.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 30 '18 at 20:20

























                  answered Nov 30 '18 at 19:42









                  Peter SzilasPeter Szilas

                  10.9k2720




                  10.9k2720






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020517%2fis-it-true-for-any-real-a-and-b-that-if-ab-0-a-b0%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei