Confusion about radius of convergence of a power series












2












$begingroup$


I'm a bit confused about the following statement from a script. We look at the power series with coefficient $ a_k = (1+1/k)^{k^2}$ and want to compute the radius of convergence $R$ of the series. The solution given is $R=1$, applying the $k^2$ root to $a_k$. I don't get this: The Cauchy-Hadamard formula involves the $k$th root which would give $R=1/e$ in my opinion. Is this a mistake in the script or is it me who is mistaken?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You are correct; it's likely a typo.
    $endgroup$
    – T. Bongers
    Dec 7 '18 at 1:16






  • 1




    $begingroup$
    You do not say what power series actually is. If it is $$sum (1+1/k)^{k^2};x^{k^2}$$ then you should use the $k^2$ root.
    $endgroup$
    – GEdgar
    Dec 7 '18 at 12:16
















2












$begingroup$


I'm a bit confused about the following statement from a script. We look at the power series with coefficient $ a_k = (1+1/k)^{k^2}$ and want to compute the radius of convergence $R$ of the series. The solution given is $R=1$, applying the $k^2$ root to $a_k$. I don't get this: The Cauchy-Hadamard formula involves the $k$th root which would give $R=1/e$ in my opinion. Is this a mistake in the script or is it me who is mistaken?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You are correct; it's likely a typo.
    $endgroup$
    – T. Bongers
    Dec 7 '18 at 1:16






  • 1




    $begingroup$
    You do not say what power series actually is. If it is $$sum (1+1/k)^{k^2};x^{k^2}$$ then you should use the $k^2$ root.
    $endgroup$
    – GEdgar
    Dec 7 '18 at 12:16














2












2








2





$begingroup$


I'm a bit confused about the following statement from a script. We look at the power series with coefficient $ a_k = (1+1/k)^{k^2}$ and want to compute the radius of convergence $R$ of the series. The solution given is $R=1$, applying the $k^2$ root to $a_k$. I don't get this: The Cauchy-Hadamard formula involves the $k$th root which would give $R=1/e$ in my opinion. Is this a mistake in the script or is it me who is mistaken?










share|cite|improve this question











$endgroup$




I'm a bit confused about the following statement from a script. We look at the power series with coefficient $ a_k = (1+1/k)^{k^2}$ and want to compute the radius of convergence $R$ of the series. The solution given is $R=1$, applying the $k^2$ root to $a_k$. I don't get this: The Cauchy-Hadamard formula involves the $k$th root which would give $R=1/e$ in my opinion. Is this a mistake in the script or is it me who is mistaken?







real-analysis complex-analysis analysis power-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 7 '18 at 1:16









Eevee Trainer

5,7961936




5,7961936










asked Dec 7 '18 at 1:15









AmarusAmarus

457819




457819








  • 1




    $begingroup$
    You are correct; it's likely a typo.
    $endgroup$
    – T. Bongers
    Dec 7 '18 at 1:16






  • 1




    $begingroup$
    You do not say what power series actually is. If it is $$sum (1+1/k)^{k^2};x^{k^2}$$ then you should use the $k^2$ root.
    $endgroup$
    – GEdgar
    Dec 7 '18 at 12:16














  • 1




    $begingroup$
    You are correct; it's likely a typo.
    $endgroup$
    – T. Bongers
    Dec 7 '18 at 1:16






  • 1




    $begingroup$
    You do not say what power series actually is. If it is $$sum (1+1/k)^{k^2};x^{k^2}$$ then you should use the $k^2$ root.
    $endgroup$
    – GEdgar
    Dec 7 '18 at 12:16








1




1




$begingroup$
You are correct; it's likely a typo.
$endgroup$
– T. Bongers
Dec 7 '18 at 1:16




$begingroup$
You are correct; it's likely a typo.
$endgroup$
– T. Bongers
Dec 7 '18 at 1:16




1




1




$begingroup$
You do not say what power series actually is. If it is $$sum (1+1/k)^{k^2};x^{k^2}$$ then you should use the $k^2$ root.
$endgroup$
– GEdgar
Dec 7 '18 at 12:16




$begingroup$
You do not say what power series actually is. If it is $$sum (1+1/k)^{k^2};x^{k^2}$$ then you should use the $k^2$ root.
$endgroup$
– GEdgar
Dec 7 '18 at 12:16










2 Answers
2






active

oldest

votes


















0












$begingroup$

You are indeed correct.



For coefficients $a_k:=(1+frac {1}{k})^{k^2}$, the Cauchy-Hadamard formula gives:



$$R=frac {1}{limsup_{ktoinfty}(|a_k|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(|(1+frac {1}{k})^{k^2}|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}((1+frac {1}{k})^{k^2})^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(1+frac {1}{k})^k}=frac {1}{e}$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Just another way to do it.
    $$a_k=(1+frac {1}{k})^{k^2}implies log(a_k)=k^2log left(1+frac{1}{k}right)$$
    $$log(a_k)-log(a_{k+1})=k^2log left(1+frac{1}{k}right)-(k+1)^2log left(1+frac{1}{k+1}right)$$ Now, use Taylor expansions to get
    $$log(a_k)-log(a_{k+1})=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
    Continue with Taylor
    $$frac{a_k} {a_{k+1}}=frac{1}{e}+frac{1}{3 e k^2}+Oleft(frac{1}{k^3}right)$$ making $R=frac{1}{e}$ as you found.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029329%2fconfusion-about-radius-of-convergence-of-a-power-series%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      You are indeed correct.



      For coefficients $a_k:=(1+frac {1}{k})^{k^2}$, the Cauchy-Hadamard formula gives:



      $$R=frac {1}{limsup_{ktoinfty}(|a_k|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(|(1+frac {1}{k})^{k^2}|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}((1+frac {1}{k})^{k^2})^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(1+frac {1}{k})^k}=frac {1}{e}$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        You are indeed correct.



        For coefficients $a_k:=(1+frac {1}{k})^{k^2}$, the Cauchy-Hadamard formula gives:



        $$R=frac {1}{limsup_{ktoinfty}(|a_k|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(|(1+frac {1}{k})^{k^2}|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}((1+frac {1}{k})^{k^2})^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(1+frac {1}{k})^k}=frac {1}{e}$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          You are indeed correct.



          For coefficients $a_k:=(1+frac {1}{k})^{k^2}$, the Cauchy-Hadamard formula gives:



          $$R=frac {1}{limsup_{ktoinfty}(|a_k|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(|(1+frac {1}{k})^{k^2}|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}((1+frac {1}{k})^{k^2})^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(1+frac {1}{k})^k}=frac {1}{e}$$






          share|cite|improve this answer









          $endgroup$



          You are indeed correct.



          For coefficients $a_k:=(1+frac {1}{k})^{k^2}$, the Cauchy-Hadamard formula gives:



          $$R=frac {1}{limsup_{ktoinfty}(|a_k|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(|(1+frac {1}{k})^{k^2}|)^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}((1+frac {1}{k})^{k^2})^{frac {1}{k}}}=frac {1}{limsup_{ktoinfty}(1+frac {1}{k})^k}=frac {1}{e}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 7 '18 at 1:30









          Mark PineauMark Pineau

          1,500414




          1,500414























              0












              $begingroup$

              Just another way to do it.
              $$a_k=(1+frac {1}{k})^{k^2}implies log(a_k)=k^2log left(1+frac{1}{k}right)$$
              $$log(a_k)-log(a_{k+1})=k^2log left(1+frac{1}{k}right)-(k+1)^2log left(1+frac{1}{k+1}right)$$ Now, use Taylor expansions to get
              $$log(a_k)-log(a_{k+1})=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
              Continue with Taylor
              $$frac{a_k} {a_{k+1}}=frac{1}{e}+frac{1}{3 e k^2}+Oleft(frac{1}{k^3}right)$$ making $R=frac{1}{e}$ as you found.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Just another way to do it.
                $$a_k=(1+frac {1}{k})^{k^2}implies log(a_k)=k^2log left(1+frac{1}{k}right)$$
                $$log(a_k)-log(a_{k+1})=k^2log left(1+frac{1}{k}right)-(k+1)^2log left(1+frac{1}{k+1}right)$$ Now, use Taylor expansions to get
                $$log(a_k)-log(a_{k+1})=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                Continue with Taylor
                $$frac{a_k} {a_{k+1}}=frac{1}{e}+frac{1}{3 e k^2}+Oleft(frac{1}{k^3}right)$$ making $R=frac{1}{e}$ as you found.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Just another way to do it.
                  $$a_k=(1+frac {1}{k})^{k^2}implies log(a_k)=k^2log left(1+frac{1}{k}right)$$
                  $$log(a_k)-log(a_{k+1})=k^2log left(1+frac{1}{k}right)-(k+1)^2log left(1+frac{1}{k+1}right)$$ Now, use Taylor expansions to get
                  $$log(a_k)-log(a_{k+1})=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                  Continue with Taylor
                  $$frac{a_k} {a_{k+1}}=frac{1}{e}+frac{1}{3 e k^2}+Oleft(frac{1}{k^3}right)$$ making $R=frac{1}{e}$ as you found.






                  share|cite|improve this answer









                  $endgroup$



                  Just another way to do it.
                  $$a_k=(1+frac {1}{k})^{k^2}implies log(a_k)=k^2log left(1+frac{1}{k}right)$$
                  $$log(a_k)-log(a_{k+1})=k^2log left(1+frac{1}{k}right)-(k+1)^2log left(1+frac{1}{k+1}right)$$ Now, use Taylor expansions to get
                  $$log(a_k)-log(a_{k+1})=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                  Continue with Taylor
                  $$frac{a_k} {a_{k+1}}=frac{1}{e}+frac{1}{3 e k^2}+Oleft(frac{1}{k^3}right)$$ making $R=frac{1}{e}$ as you found.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 7 '18 at 5:09









                  Claude LeiboviciClaude Leibovici

                  120k1157132




                  120k1157132






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029329%2fconfusion-about-radius-of-convergence-of-a-power-series%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei