How to calculate contour integration of multivalued functions?












1












$begingroup$


enter image description here



I have a question about contour integral of the multivalude function. The question is from paper arXiv:1211.6767 (page 6-7).



I want to calculate the Fourier transformation of a muti-valued function $f$
$$G(omega,mathbf{k})=int dt d^{d-1}mathbf{x} f(t,mathbf{x})
e^{iomega t-imathbf{k}cdotmathbf{x}}$$

with condition that
$$omega>0,,,,,,,,omega^2-mathbf{k}^2>0$$
so that we can deform the contour from the green one to the red one.
Function $f$ is given by
$$ f(t,mathbf{x})=
big(frac{-1}{t^2-mathbf{x}^2-iepsilon t}big)^Delta
$$

For $t<0$, $f$ can be written as
$$ f(t,mathbf{x})=
frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
$$



For $t>0$, $f$ can be written as
$$ f(t,mathbf{x})=
frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
$$



First I need to write down the function on the four legs, $1,2,3,4$
On the leg 1, since $t<0$, we should have



$$ f_1(t,mathbf{x})=
frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
$$

From leg 1 to leg 2, we need
$$(t+|x|)rightarrow(t+|x|)e^{2pi i} $$
$$ f_2(t,mathbf{x})=
frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
$$

On the leg 4, since $t>0$, we should have



$$ f_4(t,mathbf{x})=
frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
$$

From leg 4 to leg 3, we need
$$(t-|x|)rightarrow(t+|x|)e^{-2pi i} $$



$$ f_3(t,mathbf{x})=
frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
$$



Combining the above result, we have
$$G(omega,mathbf{k})=(e^{-i pi Delta}-e^{+i pi Delta})
int d^{d-1}mathbf{x} int^infty_{|x|} dt
frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} \
+(e^{+i pi Delta}-e^{-i pi Delta})
int d^{d-1}mathbf{x} int^infty_{|x|} dt
frac{e^{-iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta}$$



But the authors' result is quite different
$$G(omega,mathbf{k})=2(e^{i pi Delta}-e^{-i pi Delta})
int d^{d-1}mathbf{x} int^infty_{|x|} dt
frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} $$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    enter image description here



    I have a question about contour integral of the multivalude function. The question is from paper arXiv:1211.6767 (page 6-7).



    I want to calculate the Fourier transformation of a muti-valued function $f$
    $$G(omega,mathbf{k})=int dt d^{d-1}mathbf{x} f(t,mathbf{x})
    e^{iomega t-imathbf{k}cdotmathbf{x}}$$

    with condition that
    $$omega>0,,,,,,,,omega^2-mathbf{k}^2>0$$
    so that we can deform the contour from the green one to the red one.
    Function $f$ is given by
    $$ f(t,mathbf{x})=
    big(frac{-1}{t^2-mathbf{x}^2-iepsilon t}big)^Delta
    $$

    For $t<0$, $f$ can be written as
    $$ f(t,mathbf{x})=
    frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
    $$



    For $t>0$, $f$ can be written as
    $$ f(t,mathbf{x})=
    frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
    $$



    First I need to write down the function on the four legs, $1,2,3,4$
    On the leg 1, since $t<0$, we should have



    $$ f_1(t,mathbf{x})=
    frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
    $$

    From leg 1 to leg 2, we need
    $$(t+|x|)rightarrow(t+|x|)e^{2pi i} $$
    $$ f_2(t,mathbf{x})=
    frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
    $$

    On the leg 4, since $t>0$, we should have



    $$ f_4(t,mathbf{x})=
    frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
    $$

    From leg 4 to leg 3, we need
    $$(t-|x|)rightarrow(t+|x|)e^{-2pi i} $$



    $$ f_3(t,mathbf{x})=
    frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
    $$



    Combining the above result, we have
    $$G(omega,mathbf{k})=(e^{-i pi Delta}-e^{+i pi Delta})
    int d^{d-1}mathbf{x} int^infty_{|x|} dt
    frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} \
    +(e^{+i pi Delta}-e^{-i pi Delta})
    int d^{d-1}mathbf{x} int^infty_{|x|} dt
    frac{e^{-iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta}$$



    But the authors' result is quite different
    $$G(omega,mathbf{k})=2(e^{i pi Delta}-e^{-i pi Delta})
    int d^{d-1}mathbf{x} int^infty_{|x|} dt
    frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} $$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      enter image description here



      I have a question about contour integral of the multivalude function. The question is from paper arXiv:1211.6767 (page 6-7).



      I want to calculate the Fourier transformation of a muti-valued function $f$
      $$G(omega,mathbf{k})=int dt d^{d-1}mathbf{x} f(t,mathbf{x})
      e^{iomega t-imathbf{k}cdotmathbf{x}}$$

      with condition that
      $$omega>0,,,,,,,,omega^2-mathbf{k}^2>0$$
      so that we can deform the contour from the green one to the red one.
      Function $f$ is given by
      $$ f(t,mathbf{x})=
      big(frac{-1}{t^2-mathbf{x}^2-iepsilon t}big)^Delta
      $$

      For $t<0$, $f$ can be written as
      $$ f(t,mathbf{x})=
      frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$



      For $t>0$, $f$ can be written as
      $$ f(t,mathbf{x})=
      frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$



      First I need to write down the function on the four legs, $1,2,3,4$
      On the leg 1, since $t<0$, we should have



      $$ f_1(t,mathbf{x})=
      frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$

      From leg 1 to leg 2, we need
      $$(t+|x|)rightarrow(t+|x|)e^{2pi i} $$
      $$ f_2(t,mathbf{x})=
      frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$

      On the leg 4, since $t>0$, we should have



      $$ f_4(t,mathbf{x})=
      frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$

      From leg 4 to leg 3, we need
      $$(t-|x|)rightarrow(t+|x|)e^{-2pi i} $$



      $$ f_3(t,mathbf{x})=
      frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$



      Combining the above result, we have
      $$G(omega,mathbf{k})=(e^{-i pi Delta}-e^{+i pi Delta})
      int d^{d-1}mathbf{x} int^infty_{|x|} dt
      frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} \
      +(e^{+i pi Delta}-e^{-i pi Delta})
      int d^{d-1}mathbf{x} int^infty_{|x|} dt
      frac{e^{-iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta}$$



      But the authors' result is quite different
      $$G(omega,mathbf{k})=2(e^{i pi Delta}-e^{-i pi Delta})
      int d^{d-1}mathbf{x} int^infty_{|x|} dt
      frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} $$










      share|cite|improve this question











      $endgroup$




      enter image description here



      I have a question about contour integral of the multivalude function. The question is from paper arXiv:1211.6767 (page 6-7).



      I want to calculate the Fourier transformation of a muti-valued function $f$
      $$G(omega,mathbf{k})=int dt d^{d-1}mathbf{x} f(t,mathbf{x})
      e^{iomega t-imathbf{k}cdotmathbf{x}}$$

      with condition that
      $$omega>0,,,,,,,,omega^2-mathbf{k}^2>0$$
      so that we can deform the contour from the green one to the red one.
      Function $f$ is given by
      $$ f(t,mathbf{x})=
      big(frac{-1}{t^2-mathbf{x}^2-iepsilon t}big)^Delta
      $$

      For $t<0$, $f$ can be written as
      $$ f(t,mathbf{x})=
      frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$



      For $t>0$, $f$ can be written as
      $$ f(t,mathbf{x})=
      frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$



      First I need to write down the function on the four legs, $1,2,3,4$
      On the leg 1, since $t<0$, we should have



      $$ f_1(t,mathbf{x})=
      frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$

      From leg 1 to leg 2, we need
      $$(t+|x|)rightarrow(t+|x|)e^{2pi i} $$
      $$ f_2(t,mathbf{x})=
      frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$

      On the leg 4, since $t>0$, we should have



      $$ f_4(t,mathbf{x})=
      frac{e^{-ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$

      From leg 4 to leg 3, we need
      $$(t-|x|)rightarrow(t+|x|)e^{-2pi i} $$



      $$ f_3(t,mathbf{x})=
      frac{e^{ipi Delta}}{ big(t^2-x^2big)^Delta}
      $$



      Combining the above result, we have
      $$G(omega,mathbf{k})=(e^{-i pi Delta}-e^{+i pi Delta})
      int d^{d-1}mathbf{x} int^infty_{|x|} dt
      frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} \
      +(e^{+i pi Delta}-e^{-i pi Delta})
      int d^{d-1}mathbf{x} int^infty_{|x|} dt
      frac{e^{-iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta}$$



      But the authors' result is quite different
      $$G(omega,mathbf{k})=2(e^{i pi Delta}-e^{-i pi Delta})
      int d^{d-1}mathbf{x} int^infty_{|x|} dt
      frac{e^{iomega t-imathbf{k}cdotmathbf{x}} }{(t^2-mathbf{x}^2)^Delta} $$







      complex-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 7 '18 at 13:13







      Craig Thone

















      asked Dec 7 '18 at 3:46









      Craig ThoneCraig Thone

      1727




      1727






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029438%2fhow-to-calculate-contour-integration-of-multivalued-functions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029438%2fhow-to-calculate-contour-integration-of-multivalued-functions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei