If $X sim mathcal{N}(mu, sigma^2)$, what is the derivative of the probability that $X geq 0$ w.r.t. $mu$ and...












1












$begingroup$


I have a variable, $X$, which is normally distributed



$$X sim mathcal{N}(mu, sigma^2)$$



I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
$$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$



I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.



$$frac{partial P[A]}{partial mu} $$
$$frac{partial P[A]}{partial sigma^2}$$



I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:



$$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
$$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$



where



$$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$



Are the above equations correct?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I have a variable, $X$, which is normally distributed



    $$X sim mathcal{N}(mu, sigma^2)$$



    I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
    $$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$



    I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.



    $$frac{partial P[A]}{partial mu} $$
    $$frac{partial P[A]}{partial sigma^2}$$



    I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:



    $$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
    $$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$



    where



    $$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$



    Are the above equations correct?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I have a variable, $X$, which is normally distributed



      $$X sim mathcal{N}(mu, sigma^2)$$



      I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
      $$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$



      I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.



      $$frac{partial P[A]}{partial mu} $$
      $$frac{partial P[A]}{partial sigma^2}$$



      I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:



      $$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
      $$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$



      where



      $$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$



      Are the above equations correct?










      share|cite|improve this question









      $endgroup$




      I have a variable, $X$, which is normally distributed



      $$X sim mathcal{N}(mu, sigma^2)$$



      I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
      $$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$



      I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.



      $$frac{partial P[A]}{partial mu} $$
      $$frac{partial P[A]}{partial sigma^2}$$



      I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:



      $$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
      $$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$



      where



      $$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$



      Are the above equations correct?







      calculus normal-distribution






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 7 '18 at 5:41









      michaelsnowdenmichaelsnowden

      13214




      13214






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :



          $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$



          Under certain conditions you can pass the limit under the integral sign and you'll get



          $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$



          Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
          frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$



          you'll get
          begin{align*}
          int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
          int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
          end{align*}



          Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$



          begin{align*}
          int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
          int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
          &= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
          &= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
          &= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
          &= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
          end{align*}






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029519%2fif-x-sim-mathcaln-mu-sigma2-what-is-the-derivative-of-the-probabilit%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :



              $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$



              Under certain conditions you can pass the limit under the integral sign and you'll get



              $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$



              Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
              frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$



              you'll get
              begin{align*}
              int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
              int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
              end{align*}



              Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$



              begin{align*}
              int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
              int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
              &= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
              &= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
              &= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
              &= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
              end{align*}






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :



                $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$



                Under certain conditions you can pass the limit under the integral sign and you'll get



                $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$



                Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
                frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$



                you'll get
                begin{align*}
                int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
                int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
                end{align*}



                Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$



                begin{align*}
                int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
                int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
                &= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
                &= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
                &= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
                &= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
                end{align*}






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :



                  $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$



                  Under certain conditions you can pass the limit under the integral sign and you'll get



                  $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$



                  Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
                  frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$



                  you'll get
                  begin{align*}
                  int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
                  int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
                  end{align*}



                  Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$



                  begin{align*}
                  int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
                  int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
                  &= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
                  &= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
                  &= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
                  &= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
                  end{align*}






                  share|cite|improve this answer











                  $endgroup$



                  No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :



                  $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$



                  Under certain conditions you can pass the limit under the integral sign and you'll get



                  $$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$



                  Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
                  frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$



                  you'll get
                  begin{align*}
                  int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
                  int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
                  end{align*}



                  Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$



                  begin{align*}
                  int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
                  int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
                  &= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
                  &= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
                  &= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
                  &= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
                  end{align*}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 7 '18 at 12:56

























                  answered Dec 7 '18 at 12:31









                  DigitalisDigitalis

                  528216




                  528216























                      2












                      $begingroup$

                      Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.






                          share|cite|improve this answer









                          $endgroup$



                          Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 7 '18 at 12:40









                          J.G.J.G.

                          25k22539




                          25k22539






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029519%2fif-x-sim-mathcaln-mu-sigma2-what-is-the-derivative-of-the-probabilit%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Quarter-circle Tiles

                              build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                              Mont Emei