Find the least nonnegative residue of: $42^{173} modulo 13$
$begingroup$
I can across this question:
Find the least nonnegative residue of:
$42^{173} modulo 13$
I have done the following:
$42^{10} ≡ 1 mod 13$
$42^{173} = 42^{10 (17) +3}$
$ 42^{173} ≡ 42^{3} mod 13$
$ 42^{3} = 74088$
We can write $74088 = a(13)+r$
so $74088 = 5699(13)+1$
Therefore,
$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$
Is this the correct way to solve it?
number-theory elementary-number-theory modular-arithmetic quadratic-residues
$endgroup$
add a comment |
$begingroup$
I can across this question:
Find the least nonnegative residue of:
$42^{173} modulo 13$
I have done the following:
$42^{10} ≡ 1 mod 13$
$42^{173} = 42^{10 (17) +3}$
$ 42^{173} ≡ 42^{3} mod 13$
$ 42^{3} = 74088$
We can write $74088 = a(13)+r$
so $74088 = 5699(13)+1$
Therefore,
$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$
Is this the correct way to solve it?
number-theory elementary-number-theory modular-arithmetic quadratic-residues
$endgroup$
3
$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47
1
$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49
$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51
2
$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51
$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53
add a comment |
$begingroup$
I can across this question:
Find the least nonnegative residue of:
$42^{173} modulo 13$
I have done the following:
$42^{10} ≡ 1 mod 13$
$42^{173} = 42^{10 (17) +3}$
$ 42^{173} ≡ 42^{3} mod 13$
$ 42^{3} = 74088$
We can write $74088 = a(13)+r$
so $74088 = 5699(13)+1$
Therefore,
$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$
Is this the correct way to solve it?
number-theory elementary-number-theory modular-arithmetic quadratic-residues
$endgroup$
I can across this question:
Find the least nonnegative residue of:
$42^{173} modulo 13$
I have done the following:
$42^{10} ≡ 1 mod 13$
$42^{173} = 42^{10 (17) +3}$
$ 42^{173} ≡ 42^{3} mod 13$
$ 42^{3} = 74088$
We can write $74088 = a(13)+r$
so $74088 = 5699(13)+1$
Therefore,
$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$
Is this the correct way to solve it?
number-theory elementary-number-theory modular-arithmetic quadratic-residues
number-theory elementary-number-theory modular-arithmetic quadratic-residues
asked Dec 7 '18 at 1:44
HidawHidaw
505624
505624
3
$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47
1
$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49
$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51
2
$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51
$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53
add a comment |
3
$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47
1
$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49
$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51
2
$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51
$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53
3
3
$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47
$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47
1
1
$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49
$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49
$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51
$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51
2
2
$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51
$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51
$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53
$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.
So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.
$endgroup$
add a comment |
$begingroup$
I don't know why you think $42^{10} equiv 1 pmod{13}$.
But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$
So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.
By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029360%2ffind-the-least-nonnegative-residue-of-42173-modulo-13%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.
So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.
$endgroup$
add a comment |
$begingroup$
By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.
So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.
$endgroup$
add a comment |
$begingroup$
By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.
So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.
$endgroup$
By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.
So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.
answered Dec 7 '18 at 2:02
Chris CusterChris Custer
11.8k3824
11.8k3824
add a comment |
add a comment |
$begingroup$
I don't know why you think $42^{10} equiv 1 pmod{13}$.
But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$
So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.
By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.
$endgroup$
add a comment |
$begingroup$
I don't know why you think $42^{10} equiv 1 pmod{13}$.
But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$
So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.
By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.
$endgroup$
add a comment |
$begingroup$
I don't know why you think $42^{10} equiv 1 pmod{13}$.
But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$
So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.
By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.
$endgroup$
I don't know why you think $42^{10} equiv 1 pmod{13}$.
But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$
So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.
By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.
edited Dec 7 '18 at 2:03
Andreas Blass
49.6k451108
49.6k451108
answered Dec 7 '18 at 2:00
fleabloodfleablood
69.4k22685
69.4k22685
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029360%2ffind-the-least-nonnegative-residue-of-42173-modulo-13%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47
1
$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49
$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51
2
$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51
$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53