Find the least nonnegative residue of: $42^{173} modulo 13$












0












$begingroup$


I can across this question:



Find the least nonnegative residue of:



$42^{173} modulo 13$



I have done the following:



$42^{10} ≡ 1 mod 13$



$42^{173} = 42^{10 (17) +3}$



$ 42^{173} ≡ 42^{3} mod 13$



$ 42^{3} = 74088$



We can write $74088 = a(13)+r$



so $74088 = 5699(13)+1$



Therefore,



$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$



Is this the correct way to solve it?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:47








  • 1




    $begingroup$
    Your method is correct, but as @fleablood points out you started with a wrong result
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:49










  • $begingroup$
    Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:51








  • 2




    $begingroup$
    Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
    $endgroup$
    – Bill Dubuque
    Dec 7 '18 at 1:51












  • $begingroup$
    $42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:53
















0












$begingroup$


I can across this question:



Find the least nonnegative residue of:



$42^{173} modulo 13$



I have done the following:



$42^{10} ≡ 1 mod 13$



$42^{173} = 42^{10 (17) +3}$



$ 42^{173} ≡ 42^{3} mod 13$



$ 42^{3} = 74088$



We can write $74088 = a(13)+r$



so $74088 = 5699(13)+1$



Therefore,



$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$



Is this the correct way to solve it?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:47








  • 1




    $begingroup$
    Your method is correct, but as @fleablood points out you started with a wrong result
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:49










  • $begingroup$
    Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:51








  • 2




    $begingroup$
    Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
    $endgroup$
    – Bill Dubuque
    Dec 7 '18 at 1:51












  • $begingroup$
    $42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:53














0












0








0





$begingroup$


I can across this question:



Find the least nonnegative residue of:



$42^{173} modulo 13$



I have done the following:



$42^{10} ≡ 1 mod 13$



$42^{173} = 42^{10 (17) +3}$



$ 42^{173} ≡ 42^{3} mod 13$



$ 42^{3} = 74088$



We can write $74088 = a(13)+r$



so $74088 = 5699(13)+1$



Therefore,



$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$



Is this the correct way to solve it?










share|cite|improve this question









$endgroup$




I can across this question:



Find the least nonnegative residue of:



$42^{173} modulo 13$



I have done the following:



$42^{10} ≡ 1 mod 13$



$42^{173} = 42^{10 (17) +3}$



$ 42^{173} ≡ 42^{3} mod 13$



$ 42^{3} = 74088$



We can write $74088 = a(13)+r$



so $74088 = 5699(13)+1$



Therefore,



$ 42^{173} ≡ 42^{3}= 74088=5699(13)+1 ≡ 1 mod 13$



Is this the correct way to solve it?







number-theory elementary-number-theory modular-arithmetic quadratic-residues






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 7 '18 at 1:44









HidawHidaw

505624




505624








  • 3




    $begingroup$
    Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:47








  • 1




    $begingroup$
    Your method is correct, but as @fleablood points out you started with a wrong result
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:49










  • $begingroup$
    Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:51








  • 2




    $begingroup$
    Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
    $endgroup$
    – Bill Dubuque
    Dec 7 '18 at 1:51












  • $begingroup$
    $42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:53














  • 3




    $begingroup$
    Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:47








  • 1




    $begingroup$
    Your method is correct, but as @fleablood points out you started with a wrong result
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:49










  • $begingroup$
    Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
    $endgroup$
    – rsadhvika
    Dec 7 '18 at 1:51








  • 2




    $begingroup$
    Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
    $endgroup$
    – Bill Dubuque
    Dec 7 '18 at 1:51












  • $begingroup$
    $42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
    $endgroup$
    – fleablood
    Dec 7 '18 at 1:53








3




3




$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47






$begingroup$
Why is $42^{10}equiv 1 pmod{13}$? And have you ever hear of Fermat's Little Theorem?
$endgroup$
– fleablood
Dec 7 '18 at 1:47






1




1




$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49




$begingroup$
Your method is correct, but as @fleablood points out you started with a wrong result
$endgroup$
– rsadhvika
Dec 7 '18 at 1:49












$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51






$begingroup$
Actually your last step should be helpful : $$42^3equiv 1pmod{13}$$
$endgroup$
– rsadhvika
Dec 7 '18 at 1:51






2




2




$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51






$begingroup$
Hint $bmod 13!: 42equiv 3 $ and $,3^{large 3}equiv 1, $ so $,3^{large 173}equiv 3^{large 2},$ by $bmod 3!: 173equiv 1!+!7!+!3equiv 2 $
$endgroup$
– Bill Dubuque
Dec 7 '18 at 1:51














$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53




$begingroup$
$42^{10} not equiv 1 mod 13$. You can do $42equiv 3pmod{13}$ and $3^3 equiv 27 equiv 1 pmod {13}$. And do what you did. But better if you know FLT.
$endgroup$
– fleablood
Dec 7 '18 at 1:53










2 Answers
2






active

oldest

votes


















2












$begingroup$

By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.



So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    I don't know why you think $42^{10} equiv 1 pmod{13}$.



    But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$



    So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.



    By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029360%2ffind-the-least-nonnegative-residue-of-42173-modulo-13%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.



      So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.



        So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.



          So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.






          share|cite|improve this answer









          $endgroup$



          By Fermat's little theorem, $42^color{blue}{12}cong1pmod{13}$.



          So, $42^{173}=({42^{12}})^{14}cdot 42^5cong42^5pmod{13}cong3^5pmod{13}cong243pmod{13}cong9pmod{13}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 7 '18 at 2:02









          Chris CusterChris Custer

          11.8k3824




          11.8k3824























              2












              $begingroup$

              I don't know why you think $42^{10} equiv 1 pmod{13}$.



              But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$



              So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.



              By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                I don't know why you think $42^{10} equiv 1 pmod{13}$.



                But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$



                So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.



                By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  I don't know why you think $42^{10} equiv 1 pmod{13}$.



                  But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$



                  So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.



                  By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.






                  share|cite|improve this answer











                  $endgroup$



                  I don't know why you think $42^{10} equiv 1 pmod{13}$.



                  But note: $42=39 + 3 equiv 3pmod {13}$ and $3^3 = 27 equiv 1 pmod {13}$



                  So $42^{173} equiv 3^{3*57+2} equiv (3^3)^{57}*3^2 equiv 1*9equiv 9 pmod {13}$.



                  By Fermat's little theorem we know $42^{12} equiv 1 mod 13$ and we could do $42^{12*14 +5}equiv 42^5equiv 3^5 = 243 equiv 9pmod{13}$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 7 '18 at 2:03









                  Andreas Blass

                  49.6k451108




                  49.6k451108










                  answered Dec 7 '18 at 2:00









                  fleabloodfleablood

                  69.4k22685




                  69.4k22685






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029360%2ffind-the-least-nonnegative-residue-of-42173-modulo-13%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Quarter-circle Tiles

                      build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                      Mont Emei