Riemann-Stieltjes Integral - Changing Order of Integration
$begingroup$
I am new to Riemann-Stieltjes integral. I want to ask a very basic question regarding changing the order of integration.
Let $ t > 0 $ and I have an integral that looks like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x). $$
What is the condition so that I change the order of integration? Or mathematically we could write the integral like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x) = int_0^t int_mathbb{R} f(g(x))dg(x)dx $$
riemann-integration
$endgroup$
add a comment |
$begingroup$
I am new to Riemann-Stieltjes integral. I want to ask a very basic question regarding changing the order of integration.
Let $ t > 0 $ and I have an integral that looks like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x). $$
What is the condition so that I change the order of integration? Or mathematically we could write the integral like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x) = int_0^t int_mathbb{R} f(g(x))dg(x)dx $$
riemann-integration
$endgroup$
$begingroup$
I believe we still need the same assumptions Fubini requires. Is $f$ a functoom of a single variable?
$endgroup$
– Sean Roberson
Dec 7 '18 at 4:44
$begingroup$
Function $ f $ is a function of $ g(x) $ and $ x $. For example, the simplest one is $ f(x) = g(x) + x $.
$endgroup$
– Ben
Dec 7 '18 at 16:23
add a comment |
$begingroup$
I am new to Riemann-Stieltjes integral. I want to ask a very basic question regarding changing the order of integration.
Let $ t > 0 $ and I have an integral that looks like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x). $$
What is the condition so that I change the order of integration? Or mathematically we could write the integral like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x) = int_0^t int_mathbb{R} f(g(x))dg(x)dx $$
riemann-integration
$endgroup$
I am new to Riemann-Stieltjes integral. I want to ask a very basic question regarding changing the order of integration.
Let $ t > 0 $ and I have an integral that looks like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x). $$
What is the condition so that I change the order of integration? Or mathematically we could write the integral like this
$$ int_mathbb{R} int_0^t f(g(x)) dx dg(x) = int_0^t int_mathbb{R} f(g(x))dg(x)dx $$
riemann-integration
riemann-integration
asked Dec 7 '18 at 1:10
BenBen
526
526
$begingroup$
I believe we still need the same assumptions Fubini requires. Is $f$ a functoom of a single variable?
$endgroup$
– Sean Roberson
Dec 7 '18 at 4:44
$begingroup$
Function $ f $ is a function of $ g(x) $ and $ x $. For example, the simplest one is $ f(x) = g(x) + x $.
$endgroup$
– Ben
Dec 7 '18 at 16:23
add a comment |
$begingroup$
I believe we still need the same assumptions Fubini requires. Is $f$ a functoom of a single variable?
$endgroup$
– Sean Roberson
Dec 7 '18 at 4:44
$begingroup$
Function $ f $ is a function of $ g(x) $ and $ x $. For example, the simplest one is $ f(x) = g(x) + x $.
$endgroup$
– Ben
Dec 7 '18 at 16:23
$begingroup$
I believe we still need the same assumptions Fubini requires. Is $f$ a functoom of a single variable?
$endgroup$
– Sean Roberson
Dec 7 '18 at 4:44
$begingroup$
I believe we still need the same assumptions Fubini requires. Is $f$ a functoom of a single variable?
$endgroup$
– Sean Roberson
Dec 7 '18 at 4:44
$begingroup$
Function $ f $ is a function of $ g(x) $ and $ x $. For example, the simplest one is $ f(x) = g(x) + x $.
$endgroup$
– Ben
Dec 7 '18 at 16:23
$begingroup$
Function $ f $ is a function of $ g(x) $ and $ x $. For example, the simplest one is $ f(x) = g(x) + x $.
$endgroup$
– Ben
Dec 7 '18 at 16:23
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029323%2friemann-stieltjes-integral-changing-order-of-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029323%2friemann-stieltjes-integral-changing-order-of-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I believe we still need the same assumptions Fubini requires. Is $f$ a functoom of a single variable?
$endgroup$
– Sean Roberson
Dec 7 '18 at 4:44
$begingroup$
Function $ f $ is a function of $ g(x) $ and $ x $. For example, the simplest one is $ f(x) = g(x) + x $.
$endgroup$
– Ben
Dec 7 '18 at 16:23