Inverse Laplace of $frac{s}{s^2+4s+5}$
$begingroup$
Find the inverse Laplace Transformation of $frac{s}{s^2+4s+5}$
I obtained...
$$frac{s}{s^2+4s+4-4+5}$$
$$frac{s}{s^2+4s+1}$$
$$frac{s}{(s+2)^2+1}$$
I am not sure what my next step is?
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Find the inverse Laplace Transformation of $frac{s}{s^2+4s+5}$
I obtained...
$$frac{s}{s^2+4s+4-4+5}$$
$$frac{s}{s^2+4s+1}$$
$$frac{s}{(s+2)^2+1}$$
I am not sure what my next step is?
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Find the inverse Laplace Transformation of $frac{s}{s^2+4s+5}$
I obtained...
$$frac{s}{s^2+4s+4-4+5}$$
$$frac{s}{s^2+4s+1}$$
$$frac{s}{(s+2)^2+1}$$
I am not sure what my next step is?
ordinary-differential-equations
$endgroup$
Find the inverse Laplace Transformation of $frac{s}{s^2+4s+5}$
I obtained...
$$frac{s}{s^2+4s+4-4+5}$$
$$frac{s}{s^2+4s+1}$$
$$frac{s}{(s+2)^2+1}$$
I am not sure what my next step is?
ordinary-differential-equations
ordinary-differential-equations
edited Dec 7 '18 at 5:50
Eevee Trainer
5,7961936
5,7961936
asked Dec 7 '18 at 5:48
sumthatup11sumthatup11
11
11
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$dfrac s{(s+2)^2+1^2}=dfrac{s+2}{(s+2)^2+1^2}-2cdotdfrac1{(s+2)^2+1^2}$$
Now use $$Lleft(e^{at}cos btright)=dfrac{s-a}{(s-a)^2+b^2}$$
$$Lleft(e^{at}sin btright)=dfrac b{(s-a)^2+b^2}$$
$endgroup$
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029524%2finverse-laplace-of-fracss24s5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$dfrac s{(s+2)^2+1^2}=dfrac{s+2}{(s+2)^2+1^2}-2cdotdfrac1{(s+2)^2+1^2}$$
Now use $$Lleft(e^{at}cos btright)=dfrac{s-a}{(s-a)^2+b^2}$$
$$Lleft(e^{at}sin btright)=dfrac b{(s-a)^2+b^2}$$
$endgroup$
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
add a comment |
$begingroup$
$$dfrac s{(s+2)^2+1^2}=dfrac{s+2}{(s+2)^2+1^2}-2cdotdfrac1{(s+2)^2+1^2}$$
Now use $$Lleft(e^{at}cos btright)=dfrac{s-a}{(s-a)^2+b^2}$$
$$Lleft(e^{at}sin btright)=dfrac b{(s-a)^2+b^2}$$
$endgroup$
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
add a comment |
$begingroup$
$$dfrac s{(s+2)^2+1^2}=dfrac{s+2}{(s+2)^2+1^2}-2cdotdfrac1{(s+2)^2+1^2}$$
Now use $$Lleft(e^{at}cos btright)=dfrac{s-a}{(s-a)^2+b^2}$$
$$Lleft(e^{at}sin btright)=dfrac b{(s-a)^2+b^2}$$
$endgroup$
$$dfrac s{(s+2)^2+1^2}=dfrac{s+2}{(s+2)^2+1^2}-2cdotdfrac1{(s+2)^2+1^2}$$
Now use $$Lleft(e^{at}cos btright)=dfrac{s-a}{(s-a)^2+b^2}$$
$$Lleft(e^{at}sin btright)=dfrac b{(s-a)^2+b^2}$$
answered Dec 7 '18 at 5:51
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
add a comment |
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
See mathworld.wolfram.com/LaplaceTransform.html
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 5:52
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
How did you get s = s+2 -2? Why did you add 2?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:00
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
@sumthatup11, To utilize the two formulas, write $$s=A(s+2)+Bcdot(1)=s(A)+(A+B)implies A=1, 2A+B=0iff B=?$$
$endgroup$
– lab bhattacharjee
Dec 7 '18 at 6:02
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
$begingroup$
I do not understand your step in the numerator. I do not understand how s = s+2....?
$endgroup$
– sumthatup11
Dec 7 '18 at 6:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029524%2finverse-laplace-of-fracss24s5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown