Formulation for calculus of variation with state-space constraint












0












$begingroup$


I'm stuck on this question, let $B = {xin mathbb{R}^n:|x|leq 1}$ be the unit ball in $mathbb{R}^n$, consider the following minimizing problem
$$ inf_{x(cdot) in mathcal{A}} int_0^infty e^{-s} Big(|x'(s)|^2 - V(x(s))Big);ds$$
where $V:mathbb{R}^nlongrightarrow mathbb{R}$ us of class $C^1$ and is bounded $|V(x)| leq C$, subjected to a somewhat unsual constraint
$$ mathcal{A} = Big{x(cdot):[0,infty)longrightarrow B: x'(cdot)in L^1_{mathrm{loc}}([0,infty)), x(0) = x_0in B Big}.$$



How can I find the correct Euler-Lagrange equation for this problem? The problems appear when I need to find a good test function space $gamma(cdot)$ such that $eta+gamma in mathcal{A}$ for all $eta$ and $gamma$, which is not clear how to make $eta(s)+gamma(s) in B$ for all $s$, and also the boundary for the Euler-Lagrange equation is unclear.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Wouldn't $x'(s)=0$ minimize the problem, so $x(s)=x_0$?
    $endgroup$
    – Kwin van der Veen
    Dec 7 '18 at 11:50










  • $begingroup$
    I just fixed it!
    $endgroup$
    – Sean
    Dec 7 '18 at 22:27
















0












$begingroup$


I'm stuck on this question, let $B = {xin mathbb{R}^n:|x|leq 1}$ be the unit ball in $mathbb{R}^n$, consider the following minimizing problem
$$ inf_{x(cdot) in mathcal{A}} int_0^infty e^{-s} Big(|x'(s)|^2 - V(x(s))Big);ds$$
where $V:mathbb{R}^nlongrightarrow mathbb{R}$ us of class $C^1$ and is bounded $|V(x)| leq C$, subjected to a somewhat unsual constraint
$$ mathcal{A} = Big{x(cdot):[0,infty)longrightarrow B: x'(cdot)in L^1_{mathrm{loc}}([0,infty)), x(0) = x_0in B Big}.$$



How can I find the correct Euler-Lagrange equation for this problem? The problems appear when I need to find a good test function space $gamma(cdot)$ such that $eta+gamma in mathcal{A}$ for all $eta$ and $gamma$, which is not clear how to make $eta(s)+gamma(s) in B$ for all $s$, and also the boundary for the Euler-Lagrange equation is unclear.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Wouldn't $x'(s)=0$ minimize the problem, so $x(s)=x_0$?
    $endgroup$
    – Kwin van der Veen
    Dec 7 '18 at 11:50










  • $begingroup$
    I just fixed it!
    $endgroup$
    – Sean
    Dec 7 '18 at 22:27














0












0








0


2



$begingroup$


I'm stuck on this question, let $B = {xin mathbb{R}^n:|x|leq 1}$ be the unit ball in $mathbb{R}^n$, consider the following minimizing problem
$$ inf_{x(cdot) in mathcal{A}} int_0^infty e^{-s} Big(|x'(s)|^2 - V(x(s))Big);ds$$
where $V:mathbb{R}^nlongrightarrow mathbb{R}$ us of class $C^1$ and is bounded $|V(x)| leq C$, subjected to a somewhat unsual constraint
$$ mathcal{A} = Big{x(cdot):[0,infty)longrightarrow B: x'(cdot)in L^1_{mathrm{loc}}([0,infty)), x(0) = x_0in B Big}.$$



How can I find the correct Euler-Lagrange equation for this problem? The problems appear when I need to find a good test function space $gamma(cdot)$ such that $eta+gamma in mathcal{A}$ for all $eta$ and $gamma$, which is not clear how to make $eta(s)+gamma(s) in B$ for all $s$, and also the boundary for the Euler-Lagrange equation is unclear.










share|cite|improve this question











$endgroup$




I'm stuck on this question, let $B = {xin mathbb{R}^n:|x|leq 1}$ be the unit ball in $mathbb{R}^n$, consider the following minimizing problem
$$ inf_{x(cdot) in mathcal{A}} int_0^infty e^{-s} Big(|x'(s)|^2 - V(x(s))Big);ds$$
where $V:mathbb{R}^nlongrightarrow mathbb{R}$ us of class $C^1$ and is bounded $|V(x)| leq C$, subjected to a somewhat unsual constraint
$$ mathcal{A} = Big{x(cdot):[0,infty)longrightarrow B: x'(cdot)in L^1_{mathrm{loc}}([0,infty)), x(0) = x_0in B Big}.$$



How can I find the correct Euler-Lagrange equation for this problem? The problems appear when I need to find a good test function space $gamma(cdot)$ such that $eta+gamma in mathcal{A}$ for all $eta$ and $gamma$, which is not clear how to make $eta(s)+gamma(s) in B$ for all $s$, and also the boundary for the Euler-Lagrange equation is unclear.







optimization calculus-of-variations optimal-control euler-lagrange-equation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 3:13







Sean

















asked Dec 7 '18 at 3:21









SeanSean

532513




532513












  • $begingroup$
    Wouldn't $x'(s)=0$ minimize the problem, so $x(s)=x_0$?
    $endgroup$
    – Kwin van der Veen
    Dec 7 '18 at 11:50










  • $begingroup$
    I just fixed it!
    $endgroup$
    – Sean
    Dec 7 '18 at 22:27


















  • $begingroup$
    Wouldn't $x'(s)=0$ minimize the problem, so $x(s)=x_0$?
    $endgroup$
    – Kwin van der Veen
    Dec 7 '18 at 11:50










  • $begingroup$
    I just fixed it!
    $endgroup$
    – Sean
    Dec 7 '18 at 22:27
















$begingroup$
Wouldn't $x'(s)=0$ minimize the problem, so $x(s)=x_0$?
$endgroup$
– Kwin van der Veen
Dec 7 '18 at 11:50




$begingroup$
Wouldn't $x'(s)=0$ minimize the problem, so $x(s)=x_0$?
$endgroup$
– Kwin van der Veen
Dec 7 '18 at 11:50












$begingroup$
I just fixed it!
$endgroup$
– Sean
Dec 7 '18 at 22:27




$begingroup$
I just fixed it!
$endgroup$
– Sean
Dec 7 '18 at 22:27










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029419%2fformulation-for-calculus-of-variation-with-state-space-constraint%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029419%2fformulation-for-calculus-of-variation-with-state-space-constraint%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei