Definite integral finding unknown












-1












$begingroup$


Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.



Find the value of p if ∫1^5 [f(u)-3pu] du=39



I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du



What to do next?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Oh and the ∫5/1 [f(u)-3pu] du=39
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:15






  • 1




    $begingroup$
    Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write int_1^2 f(u) du.
    $endgroup$
    – J.G.
    Dec 3 '18 at 18:17
















-1












$begingroup$


Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.



Find the value of p if ∫1^5 [f(u)-3pu] du=39



I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du



What to do next?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Oh and the ∫5/1 [f(u)-3pu] du=39
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:15






  • 1




    $begingroup$
    Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write int_1^2 f(u) du.
    $endgroup$
    – J.G.
    Dec 3 '18 at 18:17














-1












-1








-1





$begingroup$


Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.



Find the value of p if ∫1^5 [f(u)-3pu] du=39



I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du



What to do next?










share|cite|improve this question











$endgroup$




Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.



Find the value of p if ∫1^5 [f(u)-3pu] du=39



I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du



What to do next?







definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 3 '18 at 18:29







A Izalia

















asked Dec 3 '18 at 18:13









A IzaliaA Izalia

11




11












  • $begingroup$
    Oh and the ∫5/1 [f(u)-3pu] du=39
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:15






  • 1




    $begingroup$
    Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write int_1^2 f(u) du.
    $endgroup$
    – J.G.
    Dec 3 '18 at 18:17


















  • $begingroup$
    Oh and the ∫5/1 [f(u)-3pu] du=39
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:15






  • 1




    $begingroup$
    Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write int_1^2 f(u) du.
    $endgroup$
    – J.G.
    Dec 3 '18 at 18:17
















$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15




$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15




1




1




$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write int_1^2 f(u) du.
$endgroup$
– J.G.
Dec 3 '18 at 18:17




$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write int_1^2 f(u) du.
$endgroup$
– J.G.
Dec 3 '18 at 18:17










1 Answer
1






active

oldest

votes


















0












$begingroup$

Assuming I've understood your question:



Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thankyouuu so much
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:37











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024466%2fdefinite-integral-finding-unknown%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Assuming I've understood your question:



Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thankyouuu so much
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:37
















0












$begingroup$

Assuming I've understood your question:



Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thankyouuu so much
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:37














0












0








0





$begingroup$

Assuming I've understood your question:



Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.






share|cite|improve this answer









$endgroup$



Assuming I've understood your question:



Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 3 '18 at 18:19









J.G.J.G.

24.4k22539




24.4k22539












  • $begingroup$
    Thankyouuu so much
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:37


















  • $begingroup$
    Thankyouuu so much
    $endgroup$
    – A Izalia
    Dec 3 '18 at 18:37
















$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37




$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024466%2fdefinite-integral-finding-unknown%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Mont Emei

Quarter-circle Tiles