Proving a sequence of functions converges uniformly












0












$begingroup$



Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$
and each number $x$, define



$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$



Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$
is uniformly convergent.




My attempt:



Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.



We have



$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$



$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$



$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$



But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have



$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$



which proves that the convergence is uniform.





Is my proof right? What can I improve?



EDIT: It is wrong because we need the limit to equal $0$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    "Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
    $endgroup$
    – xbh
    Dec 3 '18 at 19:02


















0












$begingroup$



Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$
and each number $x$, define



$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$



Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$
is uniformly convergent.




My attempt:



Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.



We have



$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$



$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$



$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$



But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have



$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$



which proves that the convergence is uniform.





Is my proof right? What can I improve?



EDIT: It is wrong because we need the limit to equal $0$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    "Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
    $endgroup$
    – xbh
    Dec 3 '18 at 19:02
















0












0








0





$begingroup$



Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$
and each number $x$, define



$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$



Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$
is uniformly convergent.




My attempt:



Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.



We have



$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$



$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$



$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$



But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have



$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$



which proves that the convergence is uniform.





Is my proof right? What can I improve?



EDIT: It is wrong because we need the limit to equal $0$.










share|cite|improve this question











$endgroup$





Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$
and each number $x$, define



$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$



Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$
is uniformly convergent.




My attempt:



Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.



We have



$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$



$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$



$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$



But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have



$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$



which proves that the convergence is uniform.





Is my proof right? What can I improve?



EDIT: It is wrong because we need the limit to equal $0$.







sequences-and-series functions proof-verification convergence uniform-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 3 '18 at 18:49







joseph

















asked Dec 3 '18 at 18:36









josephjoseph

510111




510111












  • $begingroup$
    "Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
    $endgroup$
    – xbh
    Dec 3 '18 at 19:02




















  • $begingroup$
    "Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
    $endgroup$
    – xbh
    Dec 3 '18 at 19:02


















$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02






$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024490%2fproving-a-sequence-of-functions-converges-uniformly%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024490%2fproving-a-sequence-of-functions-converges-uniformly%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei