Fourier Analysis: Prove $c_n=a_nb_n$
$begingroup$
So I am stuck in the middle of this proof:
Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where
$f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$
$g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$
$forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$
Prove that $c_n=a_nb_n$
($forall n in Z$)
Here is what I've got so far:
By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$
$c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$
However, in order to finish the proof, I need to, presumably using periodicity, say that
$c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$
Any help would be appreciated!
fourier-analysis fourier-series
$endgroup$
add a comment |
$begingroup$
So I am stuck in the middle of this proof:
Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where
$f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$
$g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$
$forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$
Prove that $c_n=a_nb_n$
($forall n in Z$)
Here is what I've got so far:
By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$
$c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$
However, in order to finish the proof, I need to, presumably using periodicity, say that
$c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$
Any help would be appreciated!
fourier-analysis fourier-series
$endgroup$
add a comment |
$begingroup$
So I am stuck in the middle of this proof:
Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where
$f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$
$g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$
$forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$
Prove that $c_n=a_nb_n$
($forall n in Z$)
Here is what I've got so far:
By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$
$c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$
However, in order to finish the proof, I need to, presumably using periodicity, say that
$c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$
Any help would be appreciated!
fourier-analysis fourier-series
$endgroup$
So I am stuck in the middle of this proof:
Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where
$f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$
$g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$
$forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$
Prove that $c_n=a_nb_n$
($forall n in Z$)
Here is what I've got so far:
By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$
$c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$
However, in order to finish the proof, I need to, presumably using periodicity, say that
$c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$
Any help would be appreciated!
fourier-analysis fourier-series
fourier-analysis fourier-series
edited Dec 3 '18 at 19:23
CluelessButCurious
asked Dec 3 '18 at 19:13
CluelessButCuriousCluelessButCurious
15610
15610
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Almost there
begin{eqnarray}
c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
&=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
&=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
&=& sum_k a_k b_k color{magenta}{delta_{nk}}
= a_n b_n
end{eqnarray}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024530%2ffourier-analysis-prove-c-n-a-nb-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Almost there
begin{eqnarray}
c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
&=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
&=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
&=& sum_k a_k b_k color{magenta}{delta_{nk}}
= a_n b_n
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Almost there
begin{eqnarray}
c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
&=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
&=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
&=& sum_k a_k b_k color{magenta}{delta_{nk}}
= a_n b_n
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Almost there
begin{eqnarray}
c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
&=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
&=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
&=& sum_k a_k b_k color{magenta}{delta_{nk}}
= a_n b_n
end{eqnarray}
$endgroup$
Almost there
begin{eqnarray}
c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
&=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
&=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
&=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
&=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
&=& sum_k a_k b_k color{magenta}{delta_{nk}}
= a_n b_n
end{eqnarray}
answered Dec 3 '18 at 19:47
caveraccaverac
14.4k31130
14.4k31130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024530%2ffourier-analysis-prove-c-n-a-nb-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown