Fourier Analysis: Prove $c_n=a_nb_n$












0












$begingroup$


So I am stuck in the middle of this proof:




Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where



$f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$



$g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$



$forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$



Prove that $c_n=a_nb_n$



($forall n in Z$)




Here is what I've got so far:



By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$



$c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$



However, in order to finish the proof, I need to, presumably using periodicity, say that



$c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$



Any help would be appreciated!










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    So I am stuck in the middle of this proof:




    Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where



    $f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$



    $g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$



    $forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$



    Prove that $c_n=a_nb_n$



    ($forall n in Z$)




    Here is what I've got so far:



    By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$



    $c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$



    However, in order to finish the proof, I need to, presumably using periodicity, say that



    $c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$



    Any help would be appreciated!










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      So I am stuck in the middle of this proof:




      Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where



      $f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$



      $g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$



      $forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$



      Prove that $c_n=a_nb_n$



      ($forall n in Z$)




      Here is what I've got so far:



      By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$



      $c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$



      However, in order to finish the proof, I need to, presumably using periodicity, say that



      $c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$



      Any help would be appreciated!










      share|cite|improve this question











      $endgroup$




      So I am stuck in the middle of this proof:




      Let $f,g in E[-pi,pi]$ be periodic functions with periods of $2pi$, where



      $f(x)$ ~ $sum_{n=-inf}^{inf}a_ne^{inx}$



      $g(x)$ ~ $sum_{n=-inf}^{inf}b_ne^{inx}$



      $forall xin R: h(x) = frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dt$ | $h(x)$ ~ $sum_{n=-inf}^{inf}c_ne^{inx}$



      Prove that $c_n=a_nb_n$



      ($forall n in Z$)




      Here is what I've got so far:



      By definition, $c_n=frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}frac{1}{2pi}int_{-pi}^{pi}f(x-t)g(t)dte^{-inx}dx$



      $c_n=frac{1}{(2pi)^2}int_{-pi}^{pi}(int_{-pi}^{pi}f(x-t)e^{-inx}dx)g(t)dt$



      However, in order to finish the proof, I need to, presumably using periodicity, say that



      $c_n=frac{1}{2pi}int_{-pi}^{pi}f(x)e^{-inx}dx cdot frac{1}{2pi}int_{-pi}^{pi}g(t)dt = a_nb_n$



      Any help would be appreciated!







      fourier-analysis fourier-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 19:23







      CluelessButCurious

















      asked Dec 3 '18 at 19:13









      CluelessButCuriousCluelessButCurious

      15610




      15610






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Almost there



          begin{eqnarray}
          c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
          &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
          &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
          &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
          &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
          &=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
          &=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
          &=& sum_k a_k b_k color{magenta}{delta_{nk}}
          = a_n b_n
          end{eqnarray}






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024530%2ffourier-analysis-prove-c-n-a-nb-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Almost there



            begin{eqnarray}
            c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
            &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
            &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
            &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
            &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
            &=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
            &=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
            &=& sum_k a_k b_k color{magenta}{delta_{nk}}
            = a_n b_n
            end{eqnarray}






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Almost there



              begin{eqnarray}
              c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
              &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
              &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
              &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
              &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
              &=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
              &=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
              &=& sum_k a_k b_k color{magenta}{delta_{nk}}
              = a_n b_n
              end{eqnarray}






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Almost there



                begin{eqnarray}
                c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
                &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
                &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
                &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
                &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
                &=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
                &=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
                &=& sum_k a_k b_k color{magenta}{delta_{nk}}
                = a_n b_n
                end{eqnarray}






                share|cite|improve this answer









                $endgroup$



                Almost there



                begin{eqnarray}
                c_n&=&frac{1}{2pi}int_{-pi}^{pi}h(x)e^{-inx}dx=frac{1}{2pi}int_{-pi}^{pi}left{frac{1}{2pi}int_{-pi}^{pi}color{blue}{f(x-t)}color{red}{g(t)}dtright}~e^{-inx}~dx \
                &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} color{blue}{sum_{k} a_ke^{ik (x-t)}}color{red}{sum_l b_l e^{il t}}e^{-inx} ~dx dt \
                &=& frac{1}{(2pi)^2} int_{-pi}^{pi}int_{-pi}^{pi} sum_{k,l} a_k b_l e^{ikx}e^{-i(k-l)t}dt dx \
                &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(k-l)t}dtright}} dx \
                &=& frac{1}{2pi} int_{-pi}^{pi} sum_{k,l} a_k b_l e^{-i(n - k)x} color{orange}{delta_{kl}} dx \
                &=& frac{1}{2pi}int_{-pi}^{pi}sum_k a_kb_k e^{-i(n - k)x}dx \
                &=&sum_k a_k b_k color{magenta}{left{frac{1}{2pi}int_{-pi}^{pi}e^{-i(n-k)t}dxright}} \
                &=& sum_k a_k b_k color{magenta}{delta_{nk}}
                = a_n b_n
                end{eqnarray}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 3 '18 at 19:47









                caveraccaverac

                14.4k31130




                14.4k31130






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024530%2ffourier-analysis-prove-c-n-a-nb-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei