For $0 le theta le pi/2$, When are both $theta/pi$ and $sqrt2sintheta$ rational?
$begingroup$
For $0 le theta le pi/2$, when are both $theta/pi$ and $sqrt2sintheta$ rational?
I think $theta=0, pi/4$ is the only cases. This problem seems to be related to Niven's theorem, but I cannot prove this.
trigonometry irrational-numbers rational-numbers
$endgroup$
add a comment |
$begingroup$
For $0 le theta le pi/2$, when are both $theta/pi$ and $sqrt2sintheta$ rational?
I think $theta=0, pi/4$ is the only cases. This problem seems to be related to Niven's theorem, but I cannot prove this.
trigonometry irrational-numbers rational-numbers
$endgroup$
1
$begingroup$
Hint: sine is periodic
$endgroup$
– Sorfosh
Dec 5 '18 at 14:57
$begingroup$
In addition to the hint provided, you can also look at the other quadrants clearly.
$endgroup$
– KM101
Dec 5 '18 at 15:05
$begingroup$
Sorry for unclear statement. The range of $theta$ is limited to the first quadrant, and what I want to prove is there is no other case rather than the two cases I mentioned.
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:10
$begingroup$
Hint: $2sin^2(theta)=1-cos(2theta)$
$endgroup$
– Ingix
Dec 5 '18 at 15:45
$begingroup$
Wow, great idea!
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:54
add a comment |
$begingroup$
For $0 le theta le pi/2$, when are both $theta/pi$ and $sqrt2sintheta$ rational?
I think $theta=0, pi/4$ is the only cases. This problem seems to be related to Niven's theorem, but I cannot prove this.
trigonometry irrational-numbers rational-numbers
$endgroup$
For $0 le theta le pi/2$, when are both $theta/pi$ and $sqrt2sintheta$ rational?
I think $theta=0, pi/4$ is the only cases. This problem seems to be related to Niven's theorem, but I cannot prove this.
trigonometry irrational-numbers rational-numbers
trigonometry irrational-numbers rational-numbers
edited Dec 5 '18 at 15:08
Jeongu Kim
asked Dec 5 '18 at 14:52
Jeongu KimJeongu Kim
734
734
1
$begingroup$
Hint: sine is periodic
$endgroup$
– Sorfosh
Dec 5 '18 at 14:57
$begingroup$
In addition to the hint provided, you can also look at the other quadrants clearly.
$endgroup$
– KM101
Dec 5 '18 at 15:05
$begingroup$
Sorry for unclear statement. The range of $theta$ is limited to the first quadrant, and what I want to prove is there is no other case rather than the two cases I mentioned.
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:10
$begingroup$
Hint: $2sin^2(theta)=1-cos(2theta)$
$endgroup$
– Ingix
Dec 5 '18 at 15:45
$begingroup$
Wow, great idea!
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:54
add a comment |
1
$begingroup$
Hint: sine is periodic
$endgroup$
– Sorfosh
Dec 5 '18 at 14:57
$begingroup$
In addition to the hint provided, you can also look at the other quadrants clearly.
$endgroup$
– KM101
Dec 5 '18 at 15:05
$begingroup$
Sorry for unclear statement. The range of $theta$ is limited to the first quadrant, and what I want to prove is there is no other case rather than the two cases I mentioned.
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:10
$begingroup$
Hint: $2sin^2(theta)=1-cos(2theta)$
$endgroup$
– Ingix
Dec 5 '18 at 15:45
$begingroup$
Wow, great idea!
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:54
1
1
$begingroup$
Hint: sine is periodic
$endgroup$
– Sorfosh
Dec 5 '18 at 14:57
$begingroup$
Hint: sine is periodic
$endgroup$
– Sorfosh
Dec 5 '18 at 14:57
$begingroup$
In addition to the hint provided, you can also look at the other quadrants clearly.
$endgroup$
– KM101
Dec 5 '18 at 15:05
$begingroup$
In addition to the hint provided, you can also look at the other quadrants clearly.
$endgroup$
– KM101
Dec 5 '18 at 15:05
$begingroup$
Sorry for unclear statement. The range of $theta$ is limited to the first quadrant, and what I want to prove is there is no other case rather than the two cases I mentioned.
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:10
$begingroup$
Sorry for unclear statement. The range of $theta$ is limited to the first quadrant, and what I want to prove is there is no other case rather than the two cases I mentioned.
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:10
$begingroup$
Hint: $2sin^2(theta)=1-cos(2theta)$
$endgroup$
– Ingix
Dec 5 '18 at 15:45
$begingroup$
Hint: $2sin^2(theta)=1-cos(2theta)$
$endgroup$
– Ingix
Dec 5 '18 at 15:45
$begingroup$
Wow, great idea!
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:54
$begingroup$
Wow, great idea!
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:54
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let us assume that $thetainpimathbb{Q}$ and $sqrt{2}sinthetainmathbb{Q}$. If $sinfrac{pi p}{q}=cosleft(frac{pi q}{2q}-frac{2pi p}{2q}right)=cosleft(frac{2pi|q-2p|}{4q}right)$ is an algebraic number of degree $2$ over $mathbb{Q}$, then we must have $frac{1}{2}varphi(4q)=2$ or $varphi(4q)=8$, so $qin{2,3,4,5,6}$. Now a manual inspection completes the job, or $cosfrac{pi}{5}inmathbb{Q}(sqrt{5})setminusmathbb{Q}$ and $cosfrac{pi}{6}inmathbb{Q}(sqrt{3})setminusmathbb{Q}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027156%2ffor-0-le-theta-le-pi-2-when-are-both-theta-pi-and-sqrt2-sin-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us assume that $thetainpimathbb{Q}$ and $sqrt{2}sinthetainmathbb{Q}$. If $sinfrac{pi p}{q}=cosleft(frac{pi q}{2q}-frac{2pi p}{2q}right)=cosleft(frac{2pi|q-2p|}{4q}right)$ is an algebraic number of degree $2$ over $mathbb{Q}$, then we must have $frac{1}{2}varphi(4q)=2$ or $varphi(4q)=8$, so $qin{2,3,4,5,6}$. Now a manual inspection completes the job, or $cosfrac{pi}{5}inmathbb{Q}(sqrt{5})setminusmathbb{Q}$ and $cosfrac{pi}{6}inmathbb{Q}(sqrt{3})setminusmathbb{Q}$.
$endgroup$
add a comment |
$begingroup$
Let us assume that $thetainpimathbb{Q}$ and $sqrt{2}sinthetainmathbb{Q}$. If $sinfrac{pi p}{q}=cosleft(frac{pi q}{2q}-frac{2pi p}{2q}right)=cosleft(frac{2pi|q-2p|}{4q}right)$ is an algebraic number of degree $2$ over $mathbb{Q}$, then we must have $frac{1}{2}varphi(4q)=2$ or $varphi(4q)=8$, so $qin{2,3,4,5,6}$. Now a manual inspection completes the job, or $cosfrac{pi}{5}inmathbb{Q}(sqrt{5})setminusmathbb{Q}$ and $cosfrac{pi}{6}inmathbb{Q}(sqrt{3})setminusmathbb{Q}$.
$endgroup$
add a comment |
$begingroup$
Let us assume that $thetainpimathbb{Q}$ and $sqrt{2}sinthetainmathbb{Q}$. If $sinfrac{pi p}{q}=cosleft(frac{pi q}{2q}-frac{2pi p}{2q}right)=cosleft(frac{2pi|q-2p|}{4q}right)$ is an algebraic number of degree $2$ over $mathbb{Q}$, then we must have $frac{1}{2}varphi(4q)=2$ or $varphi(4q)=8$, so $qin{2,3,4,5,6}$. Now a manual inspection completes the job, or $cosfrac{pi}{5}inmathbb{Q}(sqrt{5})setminusmathbb{Q}$ and $cosfrac{pi}{6}inmathbb{Q}(sqrt{3})setminusmathbb{Q}$.
$endgroup$
Let us assume that $thetainpimathbb{Q}$ and $sqrt{2}sinthetainmathbb{Q}$. If $sinfrac{pi p}{q}=cosleft(frac{pi q}{2q}-frac{2pi p}{2q}right)=cosleft(frac{2pi|q-2p|}{4q}right)$ is an algebraic number of degree $2$ over $mathbb{Q}$, then we must have $frac{1}{2}varphi(4q)=2$ or $varphi(4q)=8$, so $qin{2,3,4,5,6}$. Now a manual inspection completes the job, or $cosfrac{pi}{5}inmathbb{Q}(sqrt{5})setminusmathbb{Q}$ and $cosfrac{pi}{6}inmathbb{Q}(sqrt{3})setminusmathbb{Q}$.
answered Dec 5 '18 at 23:26
Jack D'AurizioJack D'Aurizio
289k33280660
289k33280660
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027156%2ffor-0-le-theta-le-pi-2-when-are-both-theta-pi-and-sqrt2-sin-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: sine is periodic
$endgroup$
– Sorfosh
Dec 5 '18 at 14:57
$begingroup$
In addition to the hint provided, you can also look at the other quadrants clearly.
$endgroup$
– KM101
Dec 5 '18 at 15:05
$begingroup$
Sorry for unclear statement. The range of $theta$ is limited to the first quadrant, and what I want to prove is there is no other case rather than the two cases I mentioned.
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:10
$begingroup$
Hint: $2sin^2(theta)=1-cos(2theta)$
$endgroup$
– Ingix
Dec 5 '18 at 15:45
$begingroup$
Wow, great idea!
$endgroup$
– Jeongu Kim
Dec 5 '18 at 15:54