Ramanujan congruence mod 7












4












$begingroup$


Hello I am trying to prove this congruence:



$$P(7n+5)equiv 0 pmod{7}$$



In order to do that I have done the next thing:



We have that



$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$



we multiply by $q^{2}$ then



begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}



Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.



Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore



begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}



Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$



Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$



Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.



Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.



I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$



But I do not know how to procede with this. I woud appreciate any hint you can give me.



Thank you for your time!










share|cite|improve this question











$endgroup$












  • $begingroup$
    To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
    $endgroup$
    – Peter Taylor
    Dec 5 '18 at 16:33










  • $begingroup$
    Of course but I do not know how to finish it!
    $endgroup$
    – Liddo
    Dec 5 '18 at 16:53










  • $begingroup$
    It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
    $endgroup$
    – Paramanand Singh
    Dec 6 '18 at 17:13


















4












$begingroup$


Hello I am trying to prove this congruence:



$$P(7n+5)equiv 0 pmod{7}$$



In order to do that I have done the next thing:



We have that



$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$



we multiply by $q^{2}$ then



begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}



Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.



Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore



begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}



Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$



Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$



Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.



Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.



I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$



But I do not know how to procede with this. I woud appreciate any hint you can give me.



Thank you for your time!










share|cite|improve this question











$endgroup$












  • $begingroup$
    To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
    $endgroup$
    – Peter Taylor
    Dec 5 '18 at 16:33










  • $begingroup$
    Of course but I do not know how to finish it!
    $endgroup$
    – Liddo
    Dec 5 '18 at 16:53










  • $begingroup$
    It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
    $endgroup$
    – Paramanand Singh
    Dec 6 '18 at 17:13
















4












4








4





$begingroup$


Hello I am trying to prove this congruence:



$$P(7n+5)equiv 0 pmod{7}$$



In order to do that I have done the next thing:



We have that



$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$



we multiply by $q^{2}$ then



begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}



Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.



Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore



begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}



Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$



Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$



Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.



Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.



I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$



But I do not know how to procede with this. I woud appreciate any hint you can give me.



Thank you for your time!










share|cite|improve this question











$endgroup$




Hello I am trying to prove this congruence:



$$P(7n+5)equiv 0 pmod{7}$$



In order to do that I have done the next thing:



We have that



$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$



we multiply by $q^{2}$ then



begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}



Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.



Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore



begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}



Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$



Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$



Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.



Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.



I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$



But I do not know how to procede with this. I woud appreciate any hint you can give me.



Thank you for your time!







integer-partitions q-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 5 '18 at 15:36









gt6989b

33.9k22455




33.9k22455










asked Dec 5 '18 at 15:29









LiddoLiddo

20619




20619












  • $begingroup$
    To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
    $endgroup$
    – Peter Taylor
    Dec 5 '18 at 16:33










  • $begingroup$
    Of course but I do not know how to finish it!
    $endgroup$
    – Liddo
    Dec 5 '18 at 16:53










  • $begingroup$
    It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
    $endgroup$
    – Paramanand Singh
    Dec 6 '18 at 17:13




















  • $begingroup$
    To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
    $endgroup$
    – Peter Taylor
    Dec 5 '18 at 16:33










  • $begingroup$
    Of course but I do not know how to finish it!
    $endgroup$
    – Liddo
    Dec 5 '18 at 16:53










  • $begingroup$
    It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
    $endgroup$
    – Paramanand Singh
    Dec 6 '18 at 17:13


















$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33




$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33












$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53




$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53












$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13






$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13












1 Answer
1






active

oldest

votes


















1












$begingroup$

I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
which clearly only has non-zero coefficients for powers of seven.



Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.





* It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027196%2framanujan-congruence-mod-7%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
    Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
    which clearly only has non-zero coefficients for powers of seven.



    Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.





    * It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
      Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
      which clearly only has non-zero coefficients for powers of seven.



      Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.





      * It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
        Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
        which clearly only has non-zero coefficients for powers of seven.



        Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.





        * It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$






        share|cite|improve this answer











        $endgroup$



        I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
        Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
        which clearly only has non-zero coefficients for powers of seven.



        Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.





        * It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 5 '18 at 17:20

























        answered Dec 5 '18 at 17:14









        Peter TaylorPeter Taylor

        8,84812341




        8,84812341






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027196%2framanujan-congruence-mod-7%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei