Calculate $ lim_{n to infty }a_n$
$begingroup$
Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$
What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.
sequences-and-series analysis
$endgroup$
add a comment |
$begingroup$
Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$
What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.
sequences-and-series analysis
$endgroup$
1
$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42
$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59
add a comment |
$begingroup$
Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$
What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.
sequences-and-series analysis
$endgroup$
Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$
What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.
sequences-and-series analysis
sequences-and-series analysis
asked Dec 14 '18 at 3:15
nafhgoodnafhgood
1,805422
1,805422
1
$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42
$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59
add a comment |
1
$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42
$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59
1
1
$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42
$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42
$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59
$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038889%2fcalculate-lim-n-to-infty-a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038889%2fcalculate-lim-n-to-infty-a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42
$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59