Calculate $ lim_{n to infty }a_n$












0












$begingroup$


Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$

What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
    $endgroup$
    – Melody
    Dec 14 '18 at 3:42










  • $begingroup$
    and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
    $endgroup$
    – nafhgood
    Dec 14 '18 at 3:59
















0












$begingroup$


Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$

What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
    $endgroup$
    – Melody
    Dec 14 '18 at 3:42










  • $begingroup$
    and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
    $endgroup$
    – nafhgood
    Dec 14 '18 at 3:59














0












0








0





$begingroup$


Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$

What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.










share|cite|improve this question









$endgroup$




Given $c>0$, $ a_1=frac{c}{2}$, $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}$ $n=1,2,...$ Prove that$$ lim_{n to infty }a_n=begin{cases}
1-sqrt{1-c} & 0<c leq1 \
+infty & c>1
end{cases}
$$

What if $-3leq c<0$?
I'm wondering if there is clever ways to calculate the limit? As I think this can be done by showing the sequence is monotone and bounded/unbounded and then calculate the limit. For example,
Here $a_{n+1}=frac{c}{2}+frac{a_n^2}{2}>sqrt{ca_n^2}=sqrt{c}a_n>a_n $ if $c>1$. So this case, I think $a_n$ is increasing and diverge. I'm wondering other methods of calculating the limit.







sequences-and-series analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 14 '18 at 3:15









nafhgoodnafhgood

1,805422




1,805422








  • 1




    $begingroup$
    If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
    $endgroup$
    – Melody
    Dec 14 '18 at 3:42










  • $begingroup$
    and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
    $endgroup$
    – nafhgood
    Dec 14 '18 at 3:59














  • 1




    $begingroup$
    If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
    $endgroup$
    – Melody
    Dec 14 '18 at 3:42










  • $begingroup$
    and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
    $endgroup$
    – nafhgood
    Dec 14 '18 at 3:59








1




1




$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42




$begingroup$
If $a_nto x$, then $$x=dfrac{c}{2}+dfrac{x^2}{2},$$ this is equivalent to $$x^2-2x+c=0.$$ Applying quadratic formula and reducing we get $$x=1pmsqrt{1-c}.$$ If $cleq1$, and by assumption $a_nleq1,$ then $$a_{n+1}=dfrac{c}{2}+dfrac{a_n^2}{2}leqdfrac{1}{2}+dfrac{1}{2}=1,$$ so by order limit properties $xleq 1<1+sqrt{1-c},$ hence $x=1-sqrt{1-c}.$ This tells us for $cleq1$ it is enough to show that $a_n$ converges.
$endgroup$
– Melody
Dec 14 '18 at 3:42












$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59




$begingroup$
and when $3<c<0$, then the sequence has two converging sub-sequences converging to different limit.
$endgroup$
– nafhgood
Dec 14 '18 at 3:59










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038889%2fcalculate-lim-n-to-infty-a-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038889%2fcalculate-lim-n-to-infty-a-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei