Limits of the function $[x] = y$, where $y$ is the bigger integer smaller or equal $x$?












1












$begingroup$


I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):



$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$



(Image that replaced math).



However I do not understand why that is the case.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Try to use $y leqslant [y] < y+1$ and squeeze theorem.
    $endgroup$
    – xbh
    Dec 14 '18 at 2:46










  • $begingroup$
    I still don't see it
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 3:00
















1












$begingroup$


I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):



$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$



(Image that replaced math).



However I do not understand why that is the case.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Try to use $y leqslant [y] < y+1$ and squeeze theorem.
    $endgroup$
    – xbh
    Dec 14 '18 at 2:46










  • $begingroup$
    I still don't see it
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 3:00














1












1








1


1



$begingroup$


I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):



$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$



(Image that replaced math).



However I do not understand why that is the case.










share|cite|improve this question











$endgroup$




I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):



$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$



(Image that replaced math).



However I do not understand why that is the case.







real-analysis calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 7:16









manooooh

5681517




5681517










asked Dec 14 '18 at 2:45









Maria GuthierMaria Guthier

867




867












  • $begingroup$
    Try to use $y leqslant [y] < y+1$ and squeeze theorem.
    $endgroup$
    – xbh
    Dec 14 '18 at 2:46










  • $begingroup$
    I still don't see it
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 3:00


















  • $begingroup$
    Try to use $y leqslant [y] < y+1$ and squeeze theorem.
    $endgroup$
    – xbh
    Dec 14 '18 at 2:46










  • $begingroup$
    I still don't see it
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 3:00
















$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46




$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46












$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00




$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00










1 Answer
1






active

oldest

votes


















2












$begingroup$

Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 15:34












  • $begingroup$
    @MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
    $endgroup$
    – Stupid Questions Inc
    Dec 15 '18 at 7:28










  • $begingroup$
    @StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
    $endgroup$
    – Gabriel Romon
    Dec 22 '18 at 20:10










  • $begingroup$
    @GabrielRomon somewhere on twitter
    $endgroup$
    – Stupid Questions Inc
    Dec 23 '18 at 7:49











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038865%2flimits-of-the-function-x-y-where-y-is-the-bigger-integer-smaller-or-equ%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 15:34












  • $begingroup$
    @MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
    $endgroup$
    – Stupid Questions Inc
    Dec 15 '18 at 7:28










  • $begingroup$
    @StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
    $endgroup$
    – Gabriel Romon
    Dec 22 '18 at 20:10










  • $begingroup$
    @GabrielRomon somewhere on twitter
    $endgroup$
    – Stupid Questions Inc
    Dec 23 '18 at 7:49
















2












$begingroup$

Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 15:34












  • $begingroup$
    @MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
    $endgroup$
    – Stupid Questions Inc
    Dec 15 '18 at 7:28










  • $begingroup$
    @StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
    $endgroup$
    – Gabriel Romon
    Dec 22 '18 at 20:10










  • $begingroup$
    @GabrielRomon somewhere on twitter
    $endgroup$
    – Stupid Questions Inc
    Dec 23 '18 at 7:49














2












2








2





$begingroup$

Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.






share|cite|improve this answer









$endgroup$



Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 14 '18 at 6:57









Stupid Questions IncStupid Questions Inc

7010




7010












  • $begingroup$
    But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 15:34












  • $begingroup$
    @MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
    $endgroup$
    – Stupid Questions Inc
    Dec 15 '18 at 7:28










  • $begingroup$
    @StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
    $endgroup$
    – Gabriel Romon
    Dec 22 '18 at 20:10










  • $begingroup$
    @GabrielRomon somewhere on twitter
    $endgroup$
    – Stupid Questions Inc
    Dec 23 '18 at 7:49


















  • $begingroup$
    But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
    $endgroup$
    – Maria Guthier
    Dec 14 '18 at 15:34












  • $begingroup$
    @MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
    $endgroup$
    – Stupid Questions Inc
    Dec 15 '18 at 7:28










  • $begingroup$
    @StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
    $endgroup$
    – Gabriel Romon
    Dec 22 '18 at 20:10










  • $begingroup$
    @GabrielRomon somewhere on twitter
    $endgroup$
    – Stupid Questions Inc
    Dec 23 '18 at 7:49
















$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34






$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34














$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28




$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28












$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10




$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10












$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49




$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038865%2flimits-of-the-function-x-y-where-y-is-the-bigger-integer-smaller-or-equ%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei